Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
10cm by 
10cm. Alex measures the sides to be 
9.75cm by 
9.66cm. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 10 cm 10 \mathrm{~cm} by 10 cm 10 \mathrm{~cm} . Alex measures the sides to be 9.75 cm 9.75 \mathrm{~cm} by 9.66 cm 9.66 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 10 cm 10 \mathrm{~cm} by 10 cm 10 \mathrm{~cm} . Alex measures the sides to be 9.75 cm 9.75 \mathrm{~cm} by 9.66 cm 9.66 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate actual area: First, calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = length×width\text{length} \times \text{width}\newlineActual area = 10cm×10cm10\,\text{cm} \times 10\,\text{cm}\newlineActual area = 100cm2100\,\text{cm}^2
  2. Calculate measured area: Next, calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = measured length ×\times measured width\newlineMeasured area = 9.75cm×9.66cm9.75\,\text{cm} \times 9.66\,\text{cm}\newlineMeasured area = 94.185cm294.185\,\text{cm}^2
  3. Find absolute error: Now, find the absolute error by subtracting the measured area from the actual area.\newlineAbsolute error = Actual areaMeasured area|\text{Actual area} - \text{Measured area}|\newlineAbsolute error = 100cm294.185cm2|100\text{cm}^2 - 94.185\text{cm}^2|\newlineAbsolute error = 5.815cm25.815\text{cm}^2
  4. Find relative error: To find the relative error, divide the absolute error by the actual area and then multiply by 100100 to get the percentage.\newlineRelative error = (Absolute error/Actual area)×100(\text{Absolute error} / \text{Actual area}) \times 100\newlineRelative error = (5.815cm2/100cm2)×100(5.815\,\text{cm}^2 / 100\,\text{cm}^2) \times 100\newlineRelative error = 5.815%5.815\%
  5. Round relative error: Finally, round the relative error to the nearest hundredth.\newlineRelative error (rounded) = 5.82%5.82\%

More problems from Percent error: word problems