Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Suppose that the functions ff and gg are defined as follows, {f(x)=x+2 g(x)=3x+4\begin{cases} f(x) = x + 2 \ g(x) = \sqrt{3x + 4} \end{cases} Find fg\frac{f}{g} and f+gf + g. Then, give their domains using interval notation.

Full solution

Q. Suppose that the functions ff and gg are defined as follows, {f(x)=x+2 g(x)=3x+4\begin{cases} f(x) = x + 2 \ g(x) = \sqrt{3x + 4} \end{cases} Find fg\frac{f}{g} and f+gf + g. Then, give their domains using interval notation.
  1. Define f and g functions: Define the functions f and g:\newlinef(x) = x+2x + 2,\newlineg(x) = 3x+4\sqrt{3x + 4}.
  2. Calculate (f/g)(x)(f/g)(x): Calculate (f/g)(x)(f/g)(x):(f/g)(x)=x+23x+4(f/g)(x) = \frac{x + 2}{\sqrt{3x + 4}}.
  3. Calculate (f+g)(x)(f+g)(x): Calculate (f+g)(x)(f+g)(x):(f+g)(x)=(x+2)+3x+4(f+g)(x) = (x + 2) + \sqrt{3x + 4}.
  4. Determine domain of g(x)g(x): Determine the domain of g(x)g(x):3x+4\sqrt{3x + 4} is defined for 3x+403x + 4 \geq 0. Solve 3x+403x + 4 \geq 0,3x43x \geq -4,x43x \geq -\frac{4}{3}. Domain of g(x)g(x): x43x \geq -\frac{4}{3}.
  5. Determine domain of f(x)f(x): Determine the domain of f(x)f(x):f(x)=x+2f(x) = x + 2 is defined for all real xx.\newlineDomain of f(x)f(x): all real numbers.
  6. Find common domain: Find the common domain for (f/g)(x)(f/g)(x) and (f+g)(x)(f+g)(x):\newlineSince g(x)g(x) has a more restrictive domain, the common domain is x43x \geq -\frac{4}{3}.

More problems from Domain and range of square root functions: equations