Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Suppose that the functions ff and gg are defined as follows.\newlinef(x)=2xg(x)=x3f(x)=\frac{2}{x}\quad g(x)=x-3\newlineFind fg\frac{f}{g}. Then, give its domain using an interval or union of intervals Simplify your answers.\newline(fg)(x)=0\left(\frac{f}{g}\right)(x)=\boxed{\phantom{0}}\newlineDomain of fg\frac{f}{g} :

Full solution

Q. Suppose that the functions ff and gg are defined as follows.\newlinef(x)=2xg(x)=x3f(x)=\frac{2}{x}\quad g(x)=x-3\newlineFind fg\frac{f}{g}. Then, give its domain using an interval or union of intervals Simplify your answers.\newline(fg)(x)=0\left(\frac{f}{g}\right)(x)=\boxed{\phantom{0}}\newlineDomain of fg\frac{f}{g} :
  1. Define functions: question_prompt: Find the function (f/g)(x)(f/g)(x) and determine its domain.
  2. Calculate (f/g)(x)(f/g)(x): Step 11: Define the functions f(x)f(x) and g(x)g(x). \newlinef(x)=2xf(x) = \frac{2}{x}, g(x)=x3g(x) = x - 3.
  3. Simplify expression: Step 22: Calculate (f/g)(x)(f/g)(x). \newline(f/g)(x)=f(x)g(x)=2/xx3(f/g)(x) = \frac{f(x)}{g(x)} = \frac{2/x}{x - 3}. \newlineSimplify to (f/g)(x)=2x(x3)(f/g)(x) = \frac{2}{x(x - 3)}.
  4. Determine domain: Step 33: Simplify the expression for (f/g)(x)(f/g)(x). \newline(f/g)(x)=2x23x(f/g)(x) = \frac{2}{x^2 - 3x}.
  5. Write domain: Step 44: Determine the domain of (f/g)(x)(f/g)(x). \newlineThe denominator x23xx^2 - 3x cannot be zero. \newlineFactorize: x(x3)=0x(x - 3) = 0. \newlinex=0x = 0 or x=3x = 3. \newlineThus, xx cannot be 00 or 33.
  6. Write domain: Step 44: Determine the domain of (f/g)(x)(f/g)(x). \newlineThe denominator x23xx^2 - 3x cannot be zero. \newlineFactorize: x(x3)=0x(x - 3) = 0. \newlinex=0x = 0 or x=3x = 3. \newlineThus, xx cannot be 00 or 33. Step 55: Write the domain using interval notation. \newlineDomain of (f/g)(f/g): xRx \in \mathbb{R} except x23xx^2 - 3x00. \newlineIn interval notation: x23xx^2 - 3x11.

More problems from Domain and range of square root functions: equations