Suppose that the function h is defined, for all real numbers, as follows.h(x)=⎩⎨⎧21x−2−(x+1)2=""−1=""amp; if x≤−2amp; if −2<x1=""≤=""=""=""=""if=""=""x="">1Find h(−3),h(−1), and h(1).h(−3)=h(−1)=h(1)=
Q. Suppose that the function h is defined, for all real numbers, as follows.h(x)=⎩⎨⎧21x−2−(x+1)2−1 if x≤−2 if −2<x≤1 if x>1Find h(−3),h(−1), and h(1).h(−3)=h(−1)=h(1)=
Evaluate h(−3): We need to evaluate h(−3). Since −3 is less than or equal to−2, we use the first part of the piecewise function: h(x)=21x−2. h(−3)=21(−3)−2 h(−3)=−1.5−2 h(−3)=−3.5
Evaluate h(−1): Next, we evaluate h(−1). Since −1 is greater than −2 and less than or equal to 1, we use the second part of the piecewise function: h(x)=−(x+1)2. h(−1)=−(−1+1)2 h(−1)=−(0)2 h(−1)=−0 h(−1)=0
Evaluate h(1): Finally, we evaluate h(1). Since 1 is less than or equal to 1, we use the second part of the piecewise function again: h(x)=−(x+1)2. h(1)=−(1+1)2 h(1)=−(2)2 h(1)=−4
More problems from Domain and range of quadratic functions: equations