Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Suppose that the function 
h is defined, for all real numbers, as follows.

h(x)={[(1)/(2)x-2," if "x <= -2],[-(x+1)^(2)," if "-2 < x <= 1],[-1," if "x > 1]:}
Find 
h(-3),h(-1), and 
h(1).

{:[h(-3)=],[h(-1)=],[h(1)=]:}

Suppose that the function h h is defined, for all real numbers, as follows.\newlineh(x)={12x2amp; if x2(x+1)2amp; if 2<x1=""=""=""1=""=""=""=""if=""=""x="">1 h(x)=\left\{\begin{array}{ll} \frac{1}{2} x-2 &amp; \text { if } x \leq-2 \\ -(x+1)^{2} &amp; \text { if }-2<x 1="" \leq="" \\="" -1="" &="" \text="" {="" if="" }="" x="">1 \end{array}\right. \newlineFind h(3),h(1) h(-3), h(-1) , and h(1) h(1) .\newlineh(3)=h(1)=h(1)= \begin{array}{l} h(-3)= \\ h(-1)= \\ h(1)= \end{array}

Full solution

Q. Suppose that the function h h is defined, for all real numbers, as follows.\newlineh(x)={12x2 if x2(x+1)2 if 2<x11 if x>1 h(x)=\left\{\begin{array}{ll} \frac{1}{2} x-2 & \text { if } x \leq-2 \\ -(x+1)^{2} & \text { if }-2<x \leq 1 \\ -1 & \text { if } x>1 \end{array}\right. \newlineFind h(3),h(1) h(-3), h(-1) , and h(1) h(1) .\newlineh(3)=h(1)=h(1)= \begin{array}{l} h(-3)= \\ h(-1)= \\ h(1)= \end{array}
  1. Evaluate h(3)h(-3): We need to evaluate h(3)h(-3). Since 3-3 is less than or equal to 2-2, we use the first part of the piecewise function: h(x)=12x2h(x) = \frac{1}{2}x - 2.
    h(3)=12(3)2h(-3) = \frac{1}{2}(-3) - 2
    h(3)=1.52h(-3) = -1.5 - 2
    h(3)=3.5h(-3) = -3.5
  2. Evaluate h(1)h(-1): Next, we evaluate h(1)h(-1). Since 1-1 is greater than 2-2 and less than or equal to 11, we use the second part of the piecewise function: h(x)=(x+1)2h(x) = -(x + 1)^2.
    h(1)=(1+1)2h(-1) = -(-1 + 1)^2
    h(1)=(0)2h(-1) = -(0)^2
    h(1)=0h(-1) = -0
    h(1)=0h(-1) = 0
  3. Evaluate h(1)h(1): Finally, we evaluate h(1)h(1). Since 11 is less than or equal to 11, we use the second part of the piecewise function again: h(x)=(x+1)2h(x) = -(x + 1)^2.
    h(1)=(1+1)2h(1) = -(1 + 1)^2
    h(1)=(2)2h(1) = -(2)^2
    h(1)=4h(1) = -4

More problems from Domain and range of quadratic functions: equations