Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.
sqrt(5x+1)-1=sqrt(3x)

Solve the equation.\newline5x+11=3x \sqrt{5 x+1}-1=\sqrt{3 x}

Full solution

Q. Solve the equation.\newline5x+11=3x \sqrt{5 x+1}-1=\sqrt{3 x}
  1. Isolate square root: Isolate one of the square roots. 5x+1=3x+1\sqrt{5x+1} = \sqrt{3x} + 1
  2. Square both sides: Square both sides to eliminate the square root on the left side.\newline(\sqrt{\(5\)x+\(1\)})^\(2 = (\sqrt{33x} + 11)^22
  3. Apply squaring operation: Apply the squaring operation to both sides.\newline5x+1=(3x)2+23x1+125x + 1 = (\sqrt{3x})^2 + 2\cdot\sqrt{3x}\cdot1 + 1^2
  4. Simplify right side: Simplify the right side of the equation. 5x+1=3x+23x+15x + 1 = 3x + 2\sqrt{3x} + 1
  5. Subtract to isolate: Subtract 3x3x and 11 from both sides to isolate the square root term.\newline5x+13x1=23x5x + 1 - 3x - 1 = 2\sqrt{3x}
  6. Combine like terms: Combine like terms. 2x=23x2x = 2\sqrt{3x}
  7. Divide to isolate: Divide both sides by 22 to isolate the square root.x=3xx = \sqrt{3x}
  8. Square both sides again: Square both sides again to eliminate the square root. x2=(3x)2x^2 = (\sqrt{3x})^2
  9. Apply squaring operation: Apply the squaring operation to both sides.\newlinex2=3xx^2 = 3x
  10. Set equation to zero: Subtract 3x3x from both sides to set the equation to zero.\newlinex23x=0x^2 - 3x = 0
  11. Factor out xx: Factor out xx from the left side of the equation.x(x3)=0x(x - 3) = 0
  12. Apply zero product property: Apply the zero product property. x=0x = 0 or x3=0x - 3 = 0
  13. Solve for x: Solve for x.\newlinex=0x = 0 or x=3x = 3
  14. Check solutions: Check the solutions in the original equation to ensure they do not produce a negative number under the square root or an incorrect equality.\newlineFor x=0x = 0:\newline5(0)+11=3(0)\sqrt{5(0)+1}-1 = \sqrt{3(0)}\newline11=0\sqrt{1}-1 = \sqrt{0}\newline11=01 - 1 = 0\newline0=00 = 0 (Valid solution)\newlineFor x=3x = 3:\newline5(3)+11=3(3)\sqrt{5(3)+1}-1 = \sqrt{3(3)}\newline161=9\sqrt{16}-1 = \sqrt{9}\newline41=34 - 1 = 3\newline3=33 = 3 (Valid solution)\newlineBoth solutions are valid.