Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify(325)\sqrt{\left(\frac{3}{25}\right)}.\newline(A) 35\frac{3}{5}\newline(B) 35\frac{\sqrt{3}}{5}\newline(C) 325\frac{\sqrt{3}}{25}\newline(D) 325\frac{3}{25}

Full solution

Q. Simplify(325)\sqrt{\left(\frac{3}{25}\right)}.\newline(A) 35\frac{3}{5}\newline(B) 35\frac{\sqrt{3}}{5}\newline(C) 325\frac{\sqrt{3}}{25}\newline(D) 325\frac{3}{25}
  1. Identify Fraction Square Root: Identify the square root of a fraction. The square root of a fraction can be found by taking the square root of the numerator and the square root of the denominator separately.
  2. Apply Square Root: Apply the square root to both the numerator and the denominator.\newline325=325\sqrt{\frac{3}{25}} = \frac{\sqrt{3}}{\sqrt{25}}
  3. Simplify Denominator: Simplify the square root of the denominator.\newlineSince 2525 is a perfect square, 25=5\sqrt{25} = 5.
  4. Write Simplified Form: Write down the simplified form.\newlineThe square root of the numerator remains as it is because 33 is not a perfect square, and the denominator has been simplified to 55.\newlineSo, 325=35\sqrt{\frac{3}{25}} = \frac{\sqrt{3}}{5}

More problems from Multiplication with rational exponents