Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newlinem2+3m3=0m^2 + 3m - 3 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinem=m = _____ or m=m = _____

Full solution

Q. Solve using the quadratic formula.\newlinem2+3m3=0m^2 + 3m - 3 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinem=m = _____ or m=m = _____
  1. Identify coefficients: Identify the coefficients of the quadratic equation.\newlineThe quadratic equation is in the form ax2+bx+c=0ax^2 + bx + c = 0. For the equation m2+3m3=0m^2 + 3m - 3 = 0, the coefficients are:\newlinea = 11 (coefficient of m2m^2)\newlineb = 33 (coefficient of mm)\newlinec = 3-3 (constant term)
  2. Write formula: Write down the quadratic formula.\newlineThe quadratic formula is given by m=b±b24ac2am = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Substitute coefficients: Substitute the coefficients into the quadratic formula.\newlineUsing the values of aa, bb, and cc from Step 11, we get:\newlinem=((3)±(3)24(1)(3))/(2(1))m = (-(3) \pm \sqrt{(3)^2 - 4(1)(-3)}) / (2(1))
  4. Simplify square root: Simplify under the square root.\newlineCalculate the discriminant (the expression under the square root):\newline(3)24(1)(3)=9+12=21(3)^2 - 4(1)(-3) = 9 + 12 = 21
  5. Insert discriminant: Insert the discriminant into the formula.\newlineNow we have:\newlinem=3±212m = \frac{-3 \pm \sqrt{21}}{2}
  6. Calculate possible values: Calculate the two possible values for mm. First, calculate the positive square root option: m=3+212m = \frac{-3 + \sqrt{21}}{2} m3+4.582m \approx \frac{-3 + 4.58}{2} m1.582m \approx \frac{1.58}{2} m0.79m \approx 0.79 Then, calculate the negative square root option: m=3212m = \frac{-3 - \sqrt{21}}{2} m34.582m \approx \frac{-3 - 4.58}{2} m7.582m \approx \frac{-7.58}{2} m3.79m \approx -3.79
  7. Round solutions: Round the solutions to the nearest hundredth. \newlinem0.79m \approx 0.79 (rounded from 0.7905690.790569\ldots)\newlinem3.79m \approx -3.79 (rounded from 3.790569-3.790569\ldots)

More problems from Solve a quadratic equation using the quadratic formula