Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newlinek27k+9=0k^2 - 7k + 9 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinek=k = _____ or k=k = _____

Full solution

Q. Solve using the quadratic formula.\newlinek27k+9=0k^2 - 7k + 9 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinek=k = _____ or k=k = _____
  1. Identify values of aa, bb, cc: Identify the values of aa, bb, and cc in the quadratic equation k27k+9=0k^2 − 7k + 9 = 0. The standard form of a quadratic equation is ax2+bx+c=0ax^2 + bx + c = 0. By comparing, we find: a=1a = 1 b=7b = -7 bb00
  2. Substitute values into quadratic formula: Substitute the values of aa, bb, and cc into the quadratic formula k=b±b24ac2ak = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substitute a=1a = 1, b=7b = -7, and c=9c = 9 into the quadratic formula. k=(7)±(7)241921k = \frac{-(-7) \pm \sqrt{(-7)^2 - 4\cdot1\cdot9}}{2\cdot1} k=7±49362k = \frac{7 \pm \sqrt{49 - 36}}{2}
  3. Simplify and solve for kk: Simplify under the square root and solve for kk.4936=13\sqrt{49 - 36} = \sqrt{13}.So, we have:k=7±132k = \frac{7 \pm \sqrt{13}}{2}
  4. Calculate two possible solutions: Calculate the two possible solutions for kk.k=7+132k = \frac{7 + \sqrt{13}}{2} or k=7132k = \frac{7 - \sqrt{13}}{2}
  5. Round values of k: If necessary, round the values of k to the nearest hundredth.\newlinek(7+3.61)/2k \approx (7 + 3.61) / 2 or k(73.61)/2k \approx (7 - 3.61) / 2\newlinek10.61/2k \approx 10.61 / 2 or k3.39/2k \approx 3.39 / 2\newlinek5.31k \approx 5.31 or k1.69k \approx 1.69

More problems from Solve a quadratic equation using the quadratic formula