Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline9r2+2r2=09r^2 + 2r - 2 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newliner=r = _____ or r=r = _____

Full solution

Q. Solve using the quadratic formula.\newline9r2+2r2=09r^2 + 2r - 2 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newliner=r = _____ or r=r = _____
  1. Write Quadratic Formula: Write down the quadratic formula.\newlineThe quadratic formula is used to solve equations of the form ax2+bx+c=0ax^2 + bx + c = 0. The formula is:\newliner=b±b24ac2ar = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  2. Identify Coefficients: Identify the coefficients aa, bb, and cc from the equation 9r2+2r2=09r^2 + 2r - 2 = 0. Here, a=9a = 9, b=2b = 2, and c=2c = -2.
  3. Substitute Values: Substitute the values of aa, bb, and cc into the quadratic formula.r=(2)±(2)24(9)(2)2(9)r = \frac{{-(2) \pm \sqrt{{(2)^2 - 4(9)(-2)}}}}{{2(9)}}
  4. Simplify Discriminant: Simplify the expression under the square root (the discriminant). (2)24(9)(2)=4+72=76\sqrt{(2)^2 - 4(9)(-2)} = \sqrt{4 + 72} = \sqrt{76}
  5. Simplify Formula: Simplify the quadratic formula with the values. r=2±7618r = \frac{-2 \pm \sqrt{76}}{18}
  6. Simplify Square Root: Simplify the square root 76\sqrt{76} to its simplest radical form.\newline76\sqrt{76} can be written as (419)\sqrt{(4\cdot19)}, which simplifies to 2192\sqrt{19}.
  7. Substitute Square Root: Substitute the simplified square root back into the formula.\newliner=2±21918r = \frac{-2 \pm 2\sqrt{19}}{18}
  8. Factor Out Common Factor: Simplify the expression by factoring out the common factor of 22 in the numerator.r=2(1±19)18r = \frac{2(-1 \pm \sqrt{19})}{18}r=1±199r = \frac{-1 \pm \sqrt{19}}{9}
  9. Write Two Solutions: Write down the two solutions for rr.r=1+199r = \frac{{-1 + \sqrt{19}}}{{9}} or r=1199r = \frac{{-1 - \sqrt{19}}}{{9}}

More problems from Solve a quadratic equation using the quadratic formula