Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline7y2+7y7=07y^2 + 7y - 7 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newliney=y = _____ or y=y = _____

Full solution

Q. Solve using the quadratic formula.\newline7y2+7y7=07y^2 + 7y - 7 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newliney=y = _____ or y=y = _____
  1. Identify values of aa, bb, cc: Identify the values of aa, bb, and cc in the quadratic equation 7y2+7y7=07y^2 + 7y - 7 = 0. The quadratic equation is in the form ay2+by+c=0ay^2 + by + c = 0. Comparing this with our equation, we get: a=7a = 7 b=7b = 7 bb00
  2. Substitute into quadratic formula: Substitute the values of aa, bb, and cc into the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substitute a=7a = 7, b=7b = 7, and c=7c = -7 into the formula. y=(7)±(7)247(7)27y = \frac{-(7) \pm \sqrt{(7)^2 - 4\cdot7\cdot(-7)}}{2\cdot7}
  3. Simplify expression and calculate discriminant: Simplify the expression under the square root and calculate the discriminant.\newline(7)247(7)\sqrt{(7)^2 - 4\cdot7\cdot(-7)}\newline= 49+196\sqrt{49 + 196}\newline= 245\sqrt{245}
  4. Insert discriminant into formula: Insert the value of the discriminant back into the quadratic formula.\newliney=7±24527y = \frac{-7 \pm \sqrt{245}}{2\cdot7}\newliney=7±24514y = \frac{-7 \pm \sqrt{245}}{14}
  5. Calculate possible solutions for y: Calculate the two possible solutions for y.\newliney=7+24514y = \frac{-7 + \sqrt{245}}{14} or y=724514y = \frac{-7 - \sqrt{245}}{14}
  6. Simplify square root of 245245: Simplify the square root of 245245 to its simplest radical form if possible. 245\sqrt{245} can be simplified to 49×5\sqrt{49\times 5} which is 7×57\times\sqrt{5}. So, y=7+7×514y = \frac{-7 + 7\times\sqrt{5}}{14} or y=77×514y = \frac{-7 - 7\times\sqrt{5}}{14}
  7. Simplify fractions: Simplify the fractions.\newliney=7(1+5)14y = \frac{7(-1 + \sqrt{5})}{14} or y=7(15)14y = \frac{7(-1 - \sqrt{5})}{14}\newliney=1+52y = \frac{-1 + \sqrt{5}}{2} or y=152y = \frac{-1 - \sqrt{5}}{2}
  8. Round values of y: If necessary, round the values of y to the nearest hundredth. \newliney(1+2.24)/2y \approx (-1 + 2.24) / 2 or y(12.24)/2y \approx (-1 - 2.24) / 2\newliney1.24/2y \approx 1.24 / 2 or y3.24/2y \approx -3.24 / 2\newliney0.62y \approx 0.62 or y1.62y \approx -1.62

More problems from Solve a quadratic equation using the quadratic formula