Solve using the quadratic formula.7w2+2w−6=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.w=_____ or w=_____
Q. Solve using the quadratic formula.7w2+2w−6=0Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.w=_____ or w=_____
Identify values: Identify the values of a, b, and c in the quadratic equation7w2+2w−6=0. By comparing 7w2+2w−6=0 with the standard form ax2+bx+c=0, we find: a=7b=2c=−6
Substitute into formula: Substitute the values of a, b, and c into the quadratic formula w=2a−b±b2−4ac. Substitute a=7, b=2, and c=−6 into the formula. w=2⋅7−(2)±(2)2−4⋅7⋅(−6)
Simplify expression: Simplify the expression under the square root and calculate its value.(2)2−4⋅7⋅(−6)= 4+168= 172
Simplify quadratic formula: Simplify the quadratic formula with the calculated square root value.w=2×7−2±172w=14−2±172
Calculate solutions: Calculate the two possible solutions for w.First solution:w=14−2+172Second solution:w=14−2−172
Round values: Round the values of w to the nearest hundredth, if necessary.First solution:w≈(−2+13.11)/14w≈11.11/14w≈0.79Second solution:w≈(−2−13.11)/14w≈−15.11/14w≈−1.08
More problems from Solve a quadratic equation using the quadratic formula