Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline5t2+8t6=05t^2 + 8t - 6 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinet=t = _____ or t=t = _____

Full solution

Q. Solve using the quadratic formula.\newline5t2+8t6=05t^2 + 8t - 6 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinet=t = _____ or t=t = _____
  1. Identify Coefficients: Identify the coefficients of the quadratic equation.\newlineThe quadratic equation is in the form at2+bt+c=0at^2 + bt + c = 0. For the equation 5t2+8t6=05t^2 + 8t - 6 = 0, the coefficients are:\newlinea = 55\newlineb = 88\newlinec = 6-6
  2. Substitute into Formula: Substitute the coefficients into the quadratic formula.\newlineThe quadratic formula is t=b±b24ac2at = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substituting the values we get:\newlinet=(8)±(8)24(5)(6)2(5)t = \frac{-(8) \pm \sqrt{(8)^2 - 4(5)(-6)}}{2(5)}
  3. Simplify Equation: Simplify under the square root and the denominator.\newlinet=8±64+12010t = \frac{-8 \pm \sqrt{64 + 120}}{10}\newlinet=8±18410t = \frac{-8 \pm \sqrt{184}}{10}
  4. Calculate Solutions: Simplify the square root (if possible) and calculate the solutions.\newlineSince 184184 is not a perfect square, we will leave it under the square root. We have two possible solutions:\newlinet=8+18410t = \frac{-8 + \sqrt{184}}{10} or t=818410t = \frac{-8 - \sqrt{184}}{10}
  5. Round to Nearest Hundredth: Simplify the solutions further if possible and round to the nearest hundredth if necessary.\newlinet=8+184108+13.5610t = \frac{-8 + \sqrt{184}}{10} \approx \frac{-8 + 13.56}{10} or t=818410813.5610t = \frac{-8 - \sqrt{184}}{10} \approx \frac{-8 - 13.56}{10}\newlinet5.5610t \approx \frac{5.56}{10} or t21.5610t \approx \frac{-21.56}{10}\newlinet0.56t \approx 0.56 or t2.16t \approx -2.16

More problems from Solve a quadratic equation using the quadratic formula