Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using augmented matrices.\newlinex+3y=5-x + 3y = 5\newliney=4y = 4\newline(_,_)(\_, \_)

Full solution

Q. Solve using augmented matrices.\newlinex+3y=5-x + 3y = 5\newliney=4y = 4\newline(_,_)(\_, \_)
  1. Convert Equations to Matrix: Convert the system of equations into an augmented matrix:\newlinex+3y=5-x + 3y = 5\newliney=4y = 4\newlineThe matrix is:\newline[1amp;3amp;5 0amp;1amp;4]\begin{bmatrix} -1 & 3 | & 5 \ 0 & 1 | & 4 \end{bmatrix}
  2. Eliminate Y-Term: Since the second row already shows y=4y = 4, we use this to eliminate the yy-term from the first row. Multiply the second row by 3-3 and add it to the first row: (3)×[014]+[135]=[107](-3) \times [0 1 | 4] + [-1 3 | 5] = [-1 0 | -7]
  3. Final Solution: Now, the matrix is in reduced row echelon form:\newline \begin{array}{cc|c} -1 & 0 & -7 \ 0 & 1 & 4 \end{array} \newlineThis means x=7x = -7 and y=4y = 4.