Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=x2+42x44y = x^2 + 42x - 44\newliney=42x+77y = 42x + 77\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=x2+42x44y = x^2 + 42x - 44\newliney=42x+77y = 42x + 77\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.\newliney=x2+42x44y = x^2 + 42x - 44\newliney=42x+77y = 42x + 77\newlineSo, x2+42x44=42x+77x^2 + 42x - 44 = 42x + 77
  2. Subtract to Simplify: Subtract 42x42x from both sides to get the quadratic equation in terms of xx.\newlinex2+42x4442x=42x+7742xx^2 + 42x - 44 - 42x = 42x + 77 - 42x\newlineThis simplifies to:\newlinex244=77x^2 - 44 = 77
  3. Add to Isolate x2x^2: Add 4444 to both sides to isolate the x2x^2 term.\newlinex244+44=77+44x^2 - 44 + 44 = 77 + 44\newlineThis simplifies to:\newlinex2=121x^2 = 121
  4. Take Square Root: Take the square root of both sides to solve for xx.x2=±121\sqrt{x^2} = \pm\sqrt{121}This gives us:x=±11x = \pm11
  5. Substitute x Values: Substitute x=11x = 11 into one of the original equations to find the corresponding yy value.\newlineUsing y=42x+77y = 42x + 77, we get:\newliney=42(11)+77y = 42(11) + 77\newliney=462+77y = 462 + 77\newliney=539y = 539
  6. Write as Coordinate Points: Substitute x=11x = -11 into the same equation to find the corresponding yy value.\newliney=42(11)+77y = 42(-11) + 77\newliney=462+77y = -462 + 77\newliney=385y = -385
  7. Write as Coordinate Points: Substitute x=11x = -11 into the same equation to find the corresponding yy value.y=42(11)+77y = 42(-11) + 77y=462+77y = -462 + 77y=385y = -385Write the solution as coordinate points.\newlineThe coordinate points are (11,539)(11, 539) and (11,385)(-11, -385).

More problems from Solve a nonlinear system of equations