Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=x2+24x50y = x^2 + 24x - 50\newliney=24x+50y = 24x + 50\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=x2+24x50y = x^2 + 24x - 50\newliney=24x+50y = 24x + 50\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.y=x2+24x50y = x^2 + 24x - 50y=24x+50y = 24x + 50So, x2+24x50=24x+50x^2 + 24x - 50 = 24x + 50.
  2. Subtract to Zero: Subtract 24x+5024x + 50 from both sides to set the equation to zero.\newlinex2+24x5024x50=0x^2 + 24x - 50 - 24x - 50 = 0\newlineThis simplifies to x2100=0x^2 - 100 = 0.
  3. Factor Quadratic Equation: Factor the quadratic equation. \newline(x10)(x+10)=0(x - 10)(x + 10) = 0
  4. Solve for x: Solve for x by setting each factor equal to zero.\newlinex10=0x - 10 = 0 or x+10=0x + 10 = 0\newlineThis gives us x=10x = 10 or x=10x = -10.
  5. Substitute x=10x = 10: Substitute x=10x = 10 into one of the original equations to find the corresponding yy value.\newlineUsing y=24x+50y = 24x + 50, we get y=24(10)+50y = 24(10) + 50.\newliney=240+50y = 240 + 50\newliney=290y = 290\newlineSo one intersection point is (10,290)(10, 290).
  6. Substitute x=10x = -10: Substitute x=10x = -10 into one of the original equations to find the corresponding yy value.\newlineUsing y=24x+50y = 24x + 50, we get y=24(10)+50y = 24(-10) + 50.\newliney=240+50y = -240 + 50\newliney=190y = -190\newlineSo the other intersection point is (10,190)(-10, -190).

More problems from Solve a nonlinear system of equations