Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=42x+81y = 42x + 81\newliney=x2+42x40y = x^2 + 42x - 40\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=42x+81y = 42x + 81\newliney=x2+42x40y = x^2 + 42x - 40\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.y=42x+81y = 42x + 81y=x2+42x40y = x^2 + 42x - 40So, x2+42x40=42x+81x^2 + 42x - 40 = 42x + 81
  2. Subtract 42x42x: Subtract 42x42x from both sides to start isolating the x2x^2 term.\newlinex2+42x4042x=42x+8142xx^2 + 42x - 40 - 42x = 42x + 81 - 42x\newlineThis simplifies to:\newlinex240=81x^2 - 40 = 81
  3. Add 4040: Add 4040 to both sides to isolate the x2x^2 term completely.\newlinex240+40=81+40x^2 - 40 + 40 = 81 + 40\newlineThis simplifies to:\newlinex2=121x^2 = 121
  4. Take Square Root: Take the square root of both sides to solve for xx.x2=±121\sqrt{x^2} = \pm\sqrt{121}This gives us:x=±11x = \pm11
  5. Substitute x=11x = 11: Substitute x=11x = 11 into one of the original equations to find the corresponding yy value.\newlineUsing y=42x+81y = 42x + 81, we get:\newliney=42(11)+81y = 42(11) + 81\newliney=462+81y = 462 + 81\newliney=543y = 543\newlineSo one of the points of intersection is (11,543)(11, 543).
  6. Substitute x=11x = -11: Substitute x=11x = -11 into the same equation to find the other corresponding yy value.\newlineUsing y=42x+81y = 42x + 81, we get:\newliney=42(11)+81y = 42(-11) + 81\newliney=462+81y = -462 + 81\newliney=381y = -381\newlineSo the other point of intersection is (11,381)(-11, -381).

More problems from Solve a nonlinear system of equations