Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=36x19y = -36x - 19\newliney=x211x+27y = x^2 - 11x + 27\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=36x19y = -36x - 19\newliney=x211x+27y = x^2 - 11x + 27\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.y=36x19y = -36x - 19y=x211x+27y = x^2 - 11x + 27So, x211x+27=36x19x^2 - 11x + 27 = -36x - 19
  2. Rearrange and Combine Terms: Rearrange the equation to set it to zero and combine like terms. \newlinex211x+27+36x+19=0x^2 - 11x + 27 + 36x + 19 = 0\newlinex2+25x+46=0x^2 + 25x + 46 = 0
  3. Factor Quadratic Equation: Factor the quadratic equation. \newline(x+2)(x+23)=0(x + 2)(x + 23) = 0
  4. Solve for x: Solve for x by setting each factor equal to zero.\newlinex+2=0x + 2 = 0 or x+23=0x + 23 = 0\newlinex=2x = -2 or x=23x = -23
  5. Substitute x Values: Substitute x=2x = -2 into one of the original equations to find the corresponding yy value.\newliney=36(2)19y = -36(-2) - 19\newliney=7219y = 72 - 19\newliney=53y = 53
  6. Find Corresponding y Values: Substitute x=23x = -23 into one of the original equations to find the corresponding y value.\newliney=36(23)19y = -36(-23) - 19\newliney=82819y = 828 - 19\newliney=809y = 809

More problems from Solve a nonlinear system of equations