Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=35x8y = -35x - 8\newliney=x221x+5y = x^2 - 21x + 5\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=35x8y = -35x - 8\newliney=x221x+5y = x^2 - 21x + 5\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.y=35x8y = -35x - 8y=x221x+5y = x^2 - 21x + 5So, x221x+5=35x8x^2 - 21x + 5 = -35x - 8.
  2. Rearrange and Combine Terms: Rearrange the equation to set it to zero and combine like terms.\newlinex221x+5+35x+8=0x^2 - 21x + 5 + 35x + 8 = 0\newlinex2+14x+13=0x^2 + 14x + 13 = 0
  3. Factor Quadratic Equation: Factor the quadratic equation.\newline(x+1)(x+13)=0(x + 1)(x + 13) = 0
  4. Solve for x: Solve for x by setting each factor equal to zero.\newlinex+1=0x + 1 = 0 or x+13=0x + 13 = 0\newlineThis gives us x=1x = -1 or x=13x = -13.
  5. Substitute xx Values: Substitute x=1x = -1 into one of the original equations to find the corresponding yy value.\newlineUsing y=35x8y = -35x - 8, we get y=35(1)8=358=27y = -35(-1) - 8 = 35 - 8 = 27.
  6. Write Coordinate Points: Substitute x=13x = -13 into the same original equation to find the corresponding yy value.\newlineUsing y=35x8y = -35x - 8, we get y=35(13)8=4558=447y = -35(-13) - 8 = 455 - 8 = 447.
  7. Write Coordinate Points: Substitute x=13x = -13 into the same original equation to find the corresponding yy value.\newlineUsing y=35x8y = -35x - 8, we get y=35(13)8=4558=447y = -35(-13) - 8 = 455 - 8 = 447.Write the solution as coordinate points.\newlineThe coordinate points are (1,27)(-1, 27) and (13,447)(-13, 447).

More problems from Solve a nonlinear system of equations