Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the right triangle shown in the figure.\newlineA=55.8 A=55.8^\circ , c=51 c=51 \newlinea a\approx ◻ (Round to the nearest hundredth as needed.)

Full solution

Q. Solve the right triangle shown in the figure.\newlineA=55.8 A=55.8^\circ , c=51 c=51 \newlinea a\approx ◻ (Round to the nearest hundredth as needed.)
  1. Use Cosine Function: To find the length of side aa, we can use the cosine function since we have the angle AA and the hypotenuse cc. The cosine of an angle in a right triangle is equal to the adjacent side (which is aa in this case) divided by the hypotenuse (which is cc). The formula is:\newlinecos(A)=ac\cos(A) = \frac{a}{c}\newlineWe can rearrange this formula to solve for aa:\newlinea=ccos(A)a = c \cdot \cos(A)\newlineNow we can plug in the values we know:\newlineA=55.8A = 55.8 degrees\newlinec=51c = 51\newlinea=51cos(55.8)a = 51 \cdot \cos(55.8^\circ)\newlineFirst, we need to calculate the cosine of 55.855.8 degrees.
  2. Calculate Cosine of Angle: Using a calculator, we find:\newlinecos(55.8)0.5623\cos(55.8^\circ) \approx 0.5623\newlineNow we can multiply this by the length of side cc to find side aa:\newlinea=51×0.5623a = 51 \times 0.5623
  3. Find Length of Side aa: Performing the multiplication gives us:\newlinea28.6773a \approx 28.6773\newlineWe are asked to round to the nearest hundredth, so:\newlinea28.68a \approx 28.68

More problems from Find trigonometric functions using a calculator