Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
x^(2)-2x-10=4x to the nearest tenth.
Answer: 
x=

Solve the equation x22x10=4x x^{2}-2 x-10=4 x to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation x22x10=4x x^{2}-2 x-10=4 x to the nearest tenth.\newlineAnswer: x= x=
  1. Rewrite equation in standard form: Rewrite the equation in standard form by moving all terms to one side.\newlinex22x10=4xx^2 - 2x - 10 = 4x\newlineSubtract 4x4x from both sides to get:\newlinex22x104x=0x^2 - 2x - 10 - 4x = 0\newlineCombine like terms:\newlinex26x10=0x^2 - 6x - 10 = 0
  2. Solve using quadratic formula: Solve the quadratic equation using the quadratic formula. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a = 1, b=6b = -6, and c=10c = -10. First, calculate the discriminant (b24acb^2 - 4ac): (6)24(1)(10)=36+40=76(-6)^2 - 4(1)(-10) = 36 + 40 = 76
  3. Find two solutions: Use the discriminant to find the two solutions for xx.x=(6)±7621x = \frac{-(-6) \pm \sqrt{76}}{2 \cdot 1}x=6±762x = \frac{6 \pm \sqrt{76}}{2}
  4. Calculate solutions: Calculate the two solutions for xx.\newlineFirst solution:\newlinex=6+762x = \frac{6 + \sqrt{76}}{2}\newlinex6+8.71782x \approx \frac{6 + 8.7178}{2}\newlinex14.71782x \approx \frac{14.7178}{2}\newlinex7.4x \approx 7.4 (rounded to the nearest tenth)\newlineSecond solution:\newlinex=6762x = \frac{6 - \sqrt{76}}{2}\newlinex68.71782x \approx \frac{6 - 8.7178}{2}\newlinex2.71782x \approx \frac{-2.7178}{2}\newlinex1.4x \approx -1.4 (rounded to the nearest tenth)

More problems from Find trigonometric functions using a calculator