Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation for all values of 
x.

|x-1|-4=2x
Answer: 
x=

Solve the equation for all values of x x .\newlinex14=2x |x-1|-4=2 x \newlineAnswer: x= x=

Full solution

Q. Solve the equation for all values of x x .\newlinex14=2x |x-1|-4=2 x \newlineAnswer: x= x=
  1. Consider Two Cases: We have the equation x14=2x|x-1|-4=2x. To solve it, we need to consider two cases because the absolute value function x1|x-1| can be positive or negative.
  2. Case 11: Positive or Zero: Case 11: When x1x-1 is positive or zero, x1=x1|x-1| = x-1. So the equation becomes:\newline(x1)4=2x(x-1) - 4 = 2x\newlineNow, we solve for xx.
  3. Simplify Case 11: Simplify the equation from Case 11:\newlinex14=2xx - 1 - 4 = 2x\newlinex5=2xx - 5 = 2x\newlineSubtract xx from both sides:\newline5=x-5 = x
  4. Check Case 11: Check if x=5x = -5 satisfies the original equation:\newline(5)14=2(5)|(-5)-1|-4=2(-5)\newline64=10|-6|-4=-10\newline64=106-4=-10\newlineThis is not true, so x=5x = -5 is not a solution.
  5. Case 22: Negative: Case 22: When x1x-1 is negative, x1=(x1)|x-1| = -(x-1). So the equation becomes:\newline(x1)4=2x-(x-1) - 4 = 2x\newlineNow, we solve for xx.
  6. Simplify Case 22: Simplify the equation from Case 22:\newline(x1)4=2x- (x - 1) - 4 = 2x\newlinex+14=2x-x + 1 - 4 = 2x\newlinex3=2x-x - 3 = 2x\newlineAdd xx to both sides:\newline3=3x-3 = 3x\newlineDivide by 33:\newlinex=1x = -1
  7. Check Case 22: Check if x=1x = -1 satisfies the original equation:\newline(1)14=2(1)|(-1)-1|-4=2(-1)\newline24=2|-2|-4=-2\newline24=22-4=-2\newlineThis is true, so x=1x = -1 is a solution.

More problems from Evaluate absolute value expressions