Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation for all values of 
x.

|4x-4|-4=2x
Answer: 
x=

Solve the equation for all values of x x .\newline4x44=2x |4 x-4|-4=2 x \newlineAnswer: x= x=

Full solution

Q. Solve the equation for all values of x x .\newline4x44=2x |4 x-4|-4=2 x \newlineAnswer: x= x=
  1. Write Equation: Write down the given equation.\newline4x44=2x\lvert 4x - 4 \rvert - 4 = 2x\newlineWe need to solve for xx.
  2. Isolate Absolute Value: Isolate the absolute value expression on one side of the equation.\newlineAdd 44 to both sides of the equation to isolate the absolute value.\newline4x44+4=2x+4|4x - 4| - 4 + 4 = 2x + 4\newline4x4=2x+4|4x - 4| = 2x + 4
  3. Set Up Equations: Set up two separate equations to account for the absolute value.\newlineSince A=B|A| = B implies A=BA = B or A=BA = -B, we have:\newline4x4=2x+44x - 4 = 2x + 4 or 4x4=(2x+4)4x - 4 = -(2x + 4)
  4. Solve First Equation: Solve the first equation 4x4=2x+44x - 4 = 2x + 4.\newlineSubtract 2x2x from both sides:\newline4x42x=2x+42x4x - 4 - 2x = 2x + 4 - 2x\newline2x4=42x - 4 = 4\newlineAdd 44 to both sides:\newline2x4+4=4+42x - 4 + 4 = 4 + 4\newline2x=82x = 8\newlineDivide by 22:\newlinex=82x = \frac{8}{2}\newlinex=4x = 4
  5. Solve Second Equation: Solve the second equation 4x4=(2x+4)4x - 4 = -(2x + 4).\newlineDistribute the negative sign on the right side:\newline4x4=2x44x - 4 = -2x - 4\newlineAdd 2x2x to both sides:\newline4x4+2x=2x4+2x4x - 4 + 2x = -2x - 4 + 2x\newline6x4=46x - 4 = -4\newlineAdd 44 to both sides:\newline6x4+4=4+46x - 4 + 4 = -4 + 4\newline6x=06x = 0\newlineDivide by 66:\newlinex=0/6x = 0 / 6\newline4x4=2x44x - 4 = -2x - 400

More problems from Evaluate absolute value expressions