Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
5x^(2)-18 x+5=-6x to the nearest tenth.
Answer: 
x=

Solve the equation 5x218x+5=6x 5 x^{2}-18 x+5=-6 x to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 5x218x+5=6x 5 x^{2}-18 x+5=-6 x to the nearest tenth.\newlineAnswer: x= x=
  1. Move terms to one side: First, we need to move all terms to one side of the equation to set the equation to zero. We do this by adding 6x6x to both sides of the equation.\newline5x218x+5+6x=05x^2 - 18x + 5 + 6x = 0\newline5x212x+5=05x^2 - 12x + 5 = 0
  2. Solve quadratic equation: Next, we need to solve the quadratic equation. We can either factor the quadratic, complete the square, or use the quadratic formula. The quadratic formula is x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a, b, and c are the coefficients from the quadratic equation ax^22 + bx + c = 00. In our case, a = 55, b = 12-12, and c = 55.
  3. Plug values into formula: Now we will plug the values of a, b, and c into the quadratic formula to find the values of x.\newlinex = (12)±(12)24(5)(5)2(5)\frac{-(-12) \pm \sqrt{(-12)^2 - 4(5)(5)}}{2(5)}\newlinex = 12±14410010\frac{12 \pm \sqrt{144 - 100}}{10}\newlinex = 12±4410\frac{12 \pm \sqrt{44}}{10}
  4. Simplify and divide: We simplify under the square root and then divide by 1010.\newlinex = 12±4410\frac{12 \pm \sqrt{44}}{10}\newlinex = 12±21110\frac{12 \pm 2\sqrt{11}}{10}\newlinex = 6±115\frac{6 \pm \sqrt{11}}{5}
  5. Calculate decimal values: Now we calculate the approximate decimal values for the two solutions.\newlinex ≈ 6+115\frac{6 + \sqrt{11}}{5} and x ≈ 6115\frac{6 - \sqrt{11}}{5}\newlinex ≈ 6+3.3175\frac{6 + 3.317}{5} and x ≈ 63.3175\frac{6 - 3.317}{5}\newlinex ≈ 9.3175\frac{9.317}{5} and x ≈ 2.6835\frac{2.683}{5}\newlinex ≈ 11.86348634 and x ≈ 00.53665366
  6. Round to nearest tenth: Finally, we round each solution to the nearest tenth. x1.9x \approx 1.9 and x0.5x \approx 0.5

More problems from Find trigonometric functions using a calculator