Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
4x^(2)-10 x+8=-x^(2)+22 to the nearest tenth.
Answer: 
x=

Solve the equation 4x210x+8=x2+22 4 x^{2}-10 x+8=-x^{2}+22 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 4x210x+8=x2+22 4 x^{2}-10 x+8=-x^{2}+22 to the nearest tenth.\newlineAnswer: x= x=
  1. Combine like terms: Combine like terms by moving all terms to one side of the equation.\newlineWe will add x2x^2 to both sides and subtract 2222 from both sides to get all terms on the left side.\newline4x210x+8+x222=04x^2 - 10x + 8 + x^2 - 22 = 0\newlineThis simplifies to:\newline5x210x14=05x^2 - 10x - 14 = 0
  2. Solve quadratic equation: Solve the quadratic equation.\newlineWe can use the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=5a = 5, b=10b = -10, and c=14c = -14.\newlineFirst, calculate the discriminant (b24acb^2 - 4ac):\newlineDiscriminant = (10)245(14)(-10)^2 - 4 \cdot 5 \cdot (-14)\newlineDiscriminant = 100+280100 + 280\newlineDiscriminant = 380380
  3. Calculate possible solutions: Calculate the two possible solutions for xx using the quadratic formula.\newlinex=(10)±380(25)x = \frac{-(-10) \pm \sqrt{380}}{(2 \cdot 5)}\newlinex=10±38010x = \frac{10 \pm \sqrt{380}}{10}\newlineSince we need the answer to the nearest tenth, we will calculate the square root of 380380 and then divide by 1010.\newline38019.5\sqrt{380} \approx 19.5\newlinex(10±19.5)10x \approx \frac{(10 \pm 19.5)}{10}
  4. Find solutions: Find the two solutions for xx.\newlineFirst solution:\newlinex(10+19.5)/10x \approx (10 + 19.5) / 10\newlinex29.5/10x \approx 29.5 / 10\newlinex2.95x \approx 2.95\newlineSecond solution:\newlinex(1019.5)/10x \approx (10 - 19.5) / 10\newlinex9.5/10x \approx -9.5 / 10\newlinex0.95x \approx -0.95

More problems from Transformations of quadratic functions