Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve for
y
y
y
.
\newline
3
11
=
6
y
y
=
\begin{array}{l} \frac{3}{11}=\frac{6}{y} \\ y= \end{array}
11
3
=
y
6
y
=
View step-by-step help
Home
Math Problems
Grade 6
Multiply using the distributive property
Full solution
Q.
Solve for
y
y
y
.
\newline
3
11
=
6
y
y
=
\begin{array}{l} \frac{3}{11}=\frac{6}{y} \\ y= \end{array}
11
3
=
y
6
y
=
Write Equation:
Write down the given equation.
\newline
We have the equation
(
3
11
)
=
(
6
y
)
(\frac{3}{11}) = (\frac{6}{y})
(
11
3
)
=
(
y
6
)
. Our goal is to find the value of
y
y
y
.
Cross-Multiply:
Cross-multiply to solve for
y
y
y
. Cross-multiplication gives us
3
×
y
=
11
×
6
3 \times y = 11 \times 6
3
×
y
=
11
×
6
.
Perform Multiplication:
Perform the multiplication on the right side of the equation.
11
×
6
=
66
11 \times 6 = 66
11
×
6
=
66
, so the equation becomes
3
×
y
=
66
3 \times y = 66
3
×
y
=
66
.
Divide for
y
y
y
:
Divide both sides of the equation by
3
3
3
to solve for
y
y
y
.
\newline
y
=
66
3
y = \frac{66}{3}
y
=
3
66
.
Calculate
y
y
y
:
Calculate the value of
y
y
y
.
66
3
=
22
\frac{66}{3} = 22
3
66
=
22
, so
y
=
22
y = 22
y
=
22
.
More problems from Multiply using the distributive property
Question
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6.2+37 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=4.1 i+85 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6-3 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=14 i+12.1 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
log
16
1
2
=
\log _{16} \frac{1}{2}=
lo
g
16
2
1
=
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
\begin{array}{l} y=-4 \sin (2 x-7)+3 ? \\ y=\square \end{array}
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
\begin{array}{l} y=-5 \cos (2 \pi x+1)-10 ? \\ y=\square \end{array}
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
sin
(
3
x
+
5
)
?
y
=
□
\begin{array}{l} y=\sin (3 x+5) ? \\ y=\square \end{array}
y
=
sin
(
3
x
+
5
)?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
\begin{array}{l} y=10 \cos (6 x-1)-4 ? \\ y=\square \end{array}
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
cos
(
2
π
3
x
)
+
2
?
y
=
□
\begin{array}{l} y=\cos \left(\frac{2 \pi}{3} x\right)+2 ? \\ y=\square \end{array}
y
=
cos
(
3
2
π
x
)
+
2
?
y
=
□
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant