Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for x to the nearest 10th.

3000=6680(0.985)^(x)-1200

Solve for x x to the nearest 1010th.\newline3000=6680(0.985)x1200 3000=6680(0.985)^{x}-1200

Full solution

Q. Solve for x x to the nearest 1010th.\newline3000=6680(0.985)x1200 3000=6680(0.985)^{x}-1200
  1. Set up equation: Set up the equation given by the problem.\newline3000=6680(0.985)x12003000 = 6680(0.985)^x - 1200
  2. Addition and isolation: Add 12001200 to both sides to isolate the exponential term on one side.\newline3000+1200=6680(0.985)x3000 + 1200 = 6680(0.985)^x\newline4200=6680(0.985)x4200 = 6680(0.985)^x
  3. Divide to solve: Divide both sides by 66806680 to solve for (0.985)x(0.985)^x. \newline42006680=(0.985)x\frac{4200}{6680} = (0.985)^x\newline0.628742515=(0.985)x0.628742515 = (0.985)^x
  4. Take natural logarithm: Take the natural logarithm of both sides to solve for xx.ln(0.628742515)=ln((0.985)x)\ln(0.628742515) = \ln((0.985)^x)ln(0.628742515)=xln(0.985)\ln(0.628742515) = x \cdot \ln(0.985)
  5. Divide by ln(0.985)\ln(0.985): Divide both sides by ln(0.985)\ln(0.985) to solve for xx.
    x=ln(0.628742515)ln(0.985)x = \frac{\ln(0.628742515)}{\ln(0.985)}
    xln(0.628742515)ln(0.985)x \approx \frac{\ln(0.628742515)}{\ln(0.985)}
    x22.344347680.015113296x \approx \frac{-22.34434768}{-0.015113296}
    x1478.577855x \approx 1478.577855

More problems from Find trigonometric functions using a calculator