Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x, rounding to the nearest hundredth.

88e^(x)=48
Answer:

Solve for x x , rounding to the nearest hundredth.\newline88ex=48 88 e^{x}=48 \newlineAnswer:

Full solution

Q. Solve for x x , rounding to the nearest hundredth.\newline88ex=48 88 e^{x}=48 \newlineAnswer:
  1. Isolate exponential term: Isolate the exponential term by dividing both sides of the equation by 8888.\newline88ex88=4888 \frac{88e^x}{88} = \frac{48}{88} \newlineex=4888 e^x = \frac{48}{88}
  2. Simplify fraction: Simplify the fraction on the right-hand side of the equation.\newlineex=4888=611 e^x = \frac{48}{88} = \frac{6}{11}
  3. Take natural logarithm: Take the natural logarithm of both sides to solve for x.\newlineln(ex)=ln(611) \ln(e^x) = \ln\left(\frac{6}{11}\right) \newlinex=ln(611) x = \ln\left(\frac{6}{11}\right)
  4. Use calculator: Use a calculator to find the value of the natural logarithm of 66/1111.\newlinex=ln(611)0.61903921... x = \ln\left(\frac{6}{11}\right) \approx -0.61903921...
  5. Round result: Round the result to the nearest hundredth.\newlinex0.62 x \approx -0.62

More problems from Find trigonometric functions using a calculator