Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x, rounding to the nearest hundredth.

48*3^(4x)=8
Answer:

Solve for x x , rounding to the nearest hundredth.\newline4834x=8 48 \cdot 3^{4 x}=8 \newlineAnswer:

Full solution

Q. Solve for x x , rounding to the nearest hundredth.\newline4834x=8 48 \cdot 3^{4 x}=8 \newlineAnswer:
  1. Isolate exponential term: First, we need to isolate the exponential term on one side of the equation. To do this, we divide both sides of the equation by 4848.\newlineCalculation: 4834x48=848 \frac{48 \cdot 3^{4x}}{48} = \frac{8}{48}
  2. Simplify the equation: After dividing, we simplify the equation.\newlineCalculation: 34x=16 3^{4x} = \frac{1}{6}
  3. Take natural logarithm: Next, we take the natural logarithm (ln) of both sides to solve for the exponent.\newlineCalculation: ln(34x)=ln(16) \ln(3^{4x}) = \ln\left(\frac{1}{6}\right)
  4. Rewrite using property: Using the property of logarithms that ln(ab)=bln(a) \ln(a^b) = b \cdot \ln(a) , we can rewrite the left side of the equation.\newlineCalculation: 4xln(3)=ln(16) 4x \cdot \ln(3) = \ln\left(\frac{1}{6}\right)
  5. Solve for x: Now, we solve for x by dividing both sides by 4ln(3) 4 \cdot \ln(3) .\newlineCalculation: x=ln(16)4ln(3) x = \frac{\ln\left(\frac{1}{6}\right)}{4 \cdot \ln(3)}
  6. Calculate x value: We calculate the value of x using a calculator.\newlineCalculation: xln(16)4ln(3)0.56 x \approx \frac{\ln\left(\frac{1}{6}\right)}{4 \cdot \ln(3)} \approx -0.56

More problems from Find trigonometric functions using a calculator