Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x, rounding to the nearest hundredth.

23*2^(x)=16
Answer:

Solve for x x , rounding to the nearest hundredth.\newline232x=16 23 \cdot 2^{x}=16 \newlineAnswer:

Full solution

Q. Solve for x x , rounding to the nearest hundredth.\newline232x=16 23 \cdot 2^{x}=16 \newlineAnswer:
  1. Isolate exponential term: Isolate the exponential term by dividing both sides of the equation by 2323.\newline232x23=1623 \frac{23 \cdot 2^x}{23} = \frac{16}{23} \newline2x=1623 2^x = \frac{16}{23}
  2. Take natural logarithm: Take the natural logarithm (ln) of both sides to solve for x.\newlineln(2x)=ln(1623) \ln(2^x) = \ln\left(\frac{16}{23}\right) \newlineUsing the property of logarithms that ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a), we can rewrite the left side of the equation.\newlinexln(2)=ln(1623) x \cdot \ln(2) = \ln\left(\frac{16}{23}\right)
  3. Divide by ln(22): Divide both sides by ln(2)\ln(2) to solve for x.\newlinex=ln(1623)ln(2) x = \frac{\ln\left(\frac{16}{23}\right)}{\ln(2)}
  4. Calculate x: Calculate the value of x using a calculator.\newlinexln(1623)ln(2) x \approx \frac{\ln\left(\frac{16}{23}\right)}{\ln(2)} \newlinexln(16)ln(23)ln(2) x \approx \frac{\ln(16) - \ln(23)}{\ln(2)} \newlinex2.772588723.135494220.69314718 x \approx \frac{2.77258872 - 3.13549422}{0.69314718} \newlinex0.36290550.69314718 x \approx \frac{-0.3629055}{0.69314718} \newlinex0.52373663 x \approx -0.52373663 \newlineRounded to the nearest hundredth, x0.52x \approx -0.52.

More problems from Find trigonometric functions using a calculator