Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x and write your answer in simplest form.

-4=x-2(-x+(5)/(2))+(6)/(5)
Answer: 
x=

Solve for x x and write your answer in simplest form.\newline4=x2(x+52)+65 -4=x-2\left(-x+\frac{5}{2}\right)+\frac{6}{5} \newlineAnswer: x= x=

Full solution

Q. Solve for x x and write your answer in simplest form.\newline4=x2(x+52)+65 -4=x-2\left(-x+\frac{5}{2}\right)+\frac{6}{5} \newlineAnswer: x= x=
  1. Distribute and Simplify: Distribute the 2-2 across the parentheses.\newline4=x2(x+52)+65-4 = x - 2(-x + \frac{5}{2}) + \frac{6}{5}\newline=x2(x)2(52)+65= x - 2(-x) - 2(\frac{5}{2}) + \frac{6}{5}\newline=x+2x5+65= x + 2x - 5 + \frac{6}{5}
  2. Combine Like Terms: Combine like terms.\newline=3x5+65= 3x - 5 + \frac{6}{5}\newlineTo combine the constant terms, convert 5-5 to a fraction with a denominator of 55.\newline5=5×(55)=255-5 = -5 \times \left(\frac{5}{5}\right) = -\frac{25}{5}\newlineNow we have:\newline3x255+653x - \frac{25}{5} + \frac{6}{5}
  3. Add Fractions: Add the fractions.\newline3x255+65=3x1953x - \frac{25}{5} + \frac{6}{5} = 3x - \frac{19}{5}
  4. Isolate Variable Term: Isolate the variable term.\newlineTo isolate 3x3x, add 195\frac{19}{5} to both sides of the equation.\newline4+195=3x-4 + \frac{19}{5} = 3x\newlineTo add 4-4 (which is 205-\frac{20}{5}) to 195\frac{19}{5}, we get:\newline205+195=3x-\frac{20}{5} + \frac{19}{5} = 3x\newline15=3x-\frac{1}{5} = 3x
  5. Solve for x: Solve for x by dividing both sides by 33.(15)/3=x\left(-\frac{1}{5}\right) / 3 = xTo divide by 33, multiply by the reciprocal, which is 13\frac{1}{3}.(15)(13)=x\left(-\frac{1}{5}\right) \cdot \left(\frac{1}{3}\right) = x
  6. Multiply Fractions: Multiply the fractions.\newline(15)×(13)=115(-\frac{1}{5}) \times (\frac{1}{3}) = -\frac{1}{15}\newlineSo, x=115x = -\frac{1}{15}

More problems from Multiplication with rational exponents