Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x and write your answer in simplest form.

-3x-(3)/(2)(-5x+1)=(1)/(2)(-x-(1)/(2))-5
Answer: 
x=

Solve for x x and write your answer in simplest form.\newline3x32(5x+1)=12(x12)5 -3 x-\frac{3}{2}(-5 x+1)=\frac{1}{2}\left(-x-\frac{1}{2}\right)-5 \newlineAnswer: x= x=

Full solution

Q. Solve for x x and write your answer in simplest form.\newline3x32(5x+1)=12(x12)5 -3 x-\frac{3}{2}(-5 x+1)=\frac{1}{2}\left(-x-\frac{1}{2}\right)-5 \newlineAnswer: x= x=
  1. Write Equation: Write down the original equation.\newline\(-3x - \left(\frac{33}{22}\right)(5-5x + 11) = \left(\frac{11}{22}\right)(-x - \left(\frac{11}{22}\right)) - 55
  2. Distribute Fractions: Distribute the fractions on both sides of the equation.\newline\(-3x - \left(\frac{33}{22}\right)(5-5x) - \left(\frac{33}{22}\right)(11) = \left(\frac{11}{22}\right)(-x) - \left(\frac{11}{22}\right)\left(\frac{11}{22}\right) - 55
  3. Simplify Terms: Simplify the distributed terms.\newline3x+(152)x32=12x145-3x + \left(\frac{15}{2}\right)x - \frac{3}{2} = -\frac{1}{2}x - \frac{1}{4} - 5
  4. Combine Like Terms: Combine like terms and simplify the right side of the equation.\newline3x+(152)x32=12x14204-3x + \left(\frac{15}{2}\right)x - \frac{3}{2} = -\frac{1}{2}x - \frac{1}{4} - \frac{20}{4}\newline3x+(152)x32=12x214-3x + \left(\frac{15}{2}\right)x - \frac{3}{2} = -\frac{1}{2}x - \frac{21}{4}
  5. Convert to Common Denominator: Combine like terms on the right side of the equation.\newline3x+(152)x32=12x214-3x + \left(\frac{15}{2}\right)x - \frac{3}{2} = -\frac{1}{2}x - \frac{21}{4}
  6. Combine XX Terms: Convert 3x-3x to a fraction with a common denominator of 22 to combine with (152)x(\frac{15}{2})x.\newline62x+(152)x32=12x214-\frac{6}{2}x + (\frac{15}{2})x - \frac{3}{2} = -\frac{1}{2}x - \frac{21}{4}
  7. Add/Subtract X Terms: Combine the x terms on the left side of the equation.\newline(15262)x32=12x214(\frac{15}{2} - \frac{6}{2})x - \frac{3}{2} = -\frac{1}{2}x - \frac{21}{4}\newline(92)x32=12x214(\frac{9}{2})x - \frac{3}{2} = -\frac{1}{2}x - \frac{21}{4}
  8. Isolate X Term: Add 12x\frac{1}{2}x to both sides of the equation to get all x terms on one side.\newline(92)x+12x32=214(\frac{9}{2})x + \frac{1}{2}x - \frac{3}{2} = -\frac{21}{4}
  9. Combine Fractions: Combine the xx terms on the left side of the equation.\newline(92+12)x32=214(\frac{9}{2} + \frac{1}{2})x - \frac{3}{2} = -\frac{21}{4}\newline(102)x32=214(\frac{10}{2})x - \frac{3}{2} = -\frac{21}{4}\newline5x32=2145x - \frac{3}{2} = -\frac{21}{4}
  10. Solve for X: Convert 32-\frac{3}{2} to a fraction with a common denominator of 44 to combine with 214-\frac{21}{4}. \newline5x64=2145x - \frac{6}{4} = -\frac{21}{4}
  11. Divide by 55: Add 64\frac{6}{4} to both sides of the equation to isolate the xx term.\newline5x=214+645x = -\frac{21}{4} + \frac{6}{4}
  12. Multiply Fractions: Combine the fractions on the right side of the equation.\newline5x=1545x = -\frac{15}{4}
  13. Simplify Fraction: Divide both sides by 55 to solve for xx.x=154/5x = \frac{-15}{4} / 5x=15415x = \frac{-15}{4} \cdot \frac{1}{5}
  14. Simplify Fraction: Divide both sides by 55 to solve for xx.x=154/5x = \frac{-15}{4} / 5x=15415x = \frac{-15}{4} \cdot \frac{1}{5}Multiply the fractions to find the value of xx.x=1520x = \frac{-15}{20}
  15. Simplify Fraction: Divide both sides by 55 to solve for xx.x=(15/4)/5x = (-15/4) / 5x=(15/4)×(1/5)x = (-15/4) \times (1/5)Multiply the fractions to find the value of xx.x=15/20x = -15/20Simplify the fraction to its simplest form.x=3/4x = -3/4

More problems from Multiplication with rational exponents