Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

2ln(2x-2)+12=8
Answer:

Solve for the exact value of x x .\newline2ln(2x2)+12=8 2 \ln (2 x-2)+12=8 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newline2ln(2x2)+12=8 2 \ln (2 x-2)+12=8 \newlineAnswer:
  1. Isolate logarithmic expression: Isolate the logarithmic expression.\newlineWe start by subtracting 1212 from both sides of the equation to isolate the logarithmic term.\newline2ln(2x2)+1212=8122\ln(2x-2) + 12 - 12 = 8 - 12\newline2ln(2x2)=42\ln(2x-2) = -4
  2. Divide to solve ln term: Divide both sides by 22 to solve for the ln term.\newlineDivide both sides by 22 to isolate ln(2x2)\ln(2x-2).\newline(2ln(2x2))/2=4/2(2\ln(2x-2)) / 2 = -4 / 2\newlineln(2x2)=2\ln(2x-2) = -2
  3. Exponentiate to remove ln: Exponentiate both sides to remove the natural logarithm.\newlineWe raise ee to the power of both sides of the equation to remove the natural logarithm.\newlineeln(2x2)=e2e^{\ln(2x-2)} = e^{-2}\newline2x2=e22x - 2 = e^{-2}
  4. Add to solve for 2x2x: Add 22 to both sides to solve for 2x2x.\newlineAdd 22 to both sides of the equation to isolate the term with xx.\newline2x2+2=e(2)+22x - 2 + 2 = e^{(-2)} + 2\newline2x=e(2)+22x = e^{(-2)} + 2
  5. Divide to solve for x: Divide both sides by 22 to solve for xx.\newlineDivide both sides by 22 to find the value of xx.\newline2x2=e(2)+22\frac{2x}{2} = \frac{e^{(-2)} + 2}{2}\newlinex=e(2)+22x = \frac{e^{(-2)} + 2}{2}

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity