Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve for
r
r
r
.
\newline
−
13
=
r
9
+
8
r
=
□
\begin{array}{l} -13=\frac{r}{9}+8 \\ r=\square \end{array}
−
13
=
9
r
+
8
r
=
□
View step-by-step help
Home
Math Problems
Grade 6
Multiply using the distributive property
Full solution
Q.
Solve for
r
r
r
.
\newline
−
13
=
r
9
+
8
r
=
□
\begin{array}{l} -13=\frac{r}{9}+8 \\ r=\square \end{array}
−
13
=
9
r
+
8
r
=
□
Write Equation:
Write the original equation.
\newline
We have the equation
−
13
=
r
9
+
8
-13 = \frac{r}{9} + 8
−
13
=
9
r
+
8
. Our goal is to solve for
r
r
r
.
Subtract to Isolate:
Subtract
8
8
8
from both sides of the equation to isolate the term with
r
r
r
.
\newline
−
13
−
8
=
r
9
+
8
−
8
-13 - 8 = \frac{r}{9} + 8 - 8
−
13
−
8
=
9
r
+
8
−
8
\newline
This simplifies to
−
21
=
r
9
.
-21 = \frac{r}{9}.
−
21
=
9
r
.
Multiply to Solve:
Multiply both sides of the equation by
9
9
9
to solve for
r
r
r
.
\newline
−
21
×
9
=
(
r
9
)
×
9
-21 \times 9 = \left(\frac{r}{9}\right) \times 9
−
21
×
9
=
(
9
r
)
×
9
\newline
This simplifies to
−
189
=
r
-189 = r
−
189
=
r
.
More problems from Multiply using the distributive property
Question
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6.2+37 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=4.1 i+85 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6-3 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=14 i+12.1 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
log
16
1
2
=
\log _{16} \frac{1}{2}=
lo
g
16
2
1
=
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
\begin{array}{l} y=-4 \sin (2 x-7)+3 ? \\ y=\square \end{array}
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
\begin{array}{l} y=-5 \cos (2 \pi x+1)-10 ? \\ y=\square \end{array}
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
sin
(
3
x
+
5
)
?
y
=
□
\begin{array}{l} y=\sin (3 x+5) ? \\ y=\square \end{array}
y
=
sin
(
3
x
+
5
)?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
\begin{array}{l} y=10 \cos (6 x-1)-4 ? \\ y=\square \end{array}
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
cos
(
2
π
3
x
)
+
2
?
y
=
□
\begin{array}{l} y=\cos \left(\frac{2 \pi}{3} x\right)+2 ? \\ y=\square \end{array}
y
=
cos
(
3
2
π
x
)
+
2
?
y
=
□
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant