Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve for
k
k
k
.
\newline
9
10
=
10
k
k
=
\begin{array}{l} \frac{9}{10}=\frac{10}{k} \\ k= \end{array}
10
9
=
k
10
k
=
View step-by-step help
Home
Math Problems
Grade 6
Multiply using the distributive property
Full solution
Q.
Solve for
k
k
k
.
\newline
9
10
=
10
k
k
=
\begin{array}{l} \frac{9}{10}=\frac{10}{k} \\ k= \end{array}
10
9
=
k
10
k
=
Set up proportion:
Set up the proportion as given.
\newline
We have the proportion
9
10
=
10
k
\frac{9}{10} = \frac{10}{k}
10
9
=
k
10
. We need to solve for
k
k
k
.
Cross-multiply:
Cross-multiply to find the value of
k
k
k
. Cross-multiplication gives us
9
×
k
=
10
×
10
9 \times k = 10 \times 10
9
×
k
=
10
×
10
.
Perform multiplication:
Perform the multiplication on the right side of the equation.
10
×
10
=
100
10 \times 10 = 100
10
×
10
=
100
, so we have
9
×
k
=
100
9 \times k = 100
9
×
k
=
100
.
Divide sides:
Divide both sides of the equation by
9
9
9
to solve for
k
k
k
.
\newline
k
=
100
9
.
k = \frac{100}{9}.
k
=
9
100
.
Simplify division:
Simplify the division to find the value of
k
k
k
.
k
=
11.111
…
k = 11.111\ldots
k
=
11.111
…
(which is a repeating decimal).
More problems from Multiply using the distributive property
Question
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6.2+37 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=4.1 i+85 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6-3 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=14 i+12.1 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
log
16
1
2
=
\log _{16} \frac{1}{2}=
lo
g
16
2
1
=
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
\begin{array}{l} y=-4 \sin (2 x-7)+3 ? \\ y=\square \end{array}
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
\begin{array}{l} y=-5 \cos (2 \pi x+1)-10 ? \\ y=\square \end{array}
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
sin
(
3
x
+
5
)
?
y
=
□
\begin{array}{l} y=\sin (3 x+5) ? \\ y=\square \end{array}
y
=
sin
(
3
x
+
5
)?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
\begin{array}{l} y=10 \cos (6 x-1)-4 ? \\ y=\square \end{array}
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
cos
(
2
π
3
x
)
+
2
?
y
=
□
\begin{array}{l} y=\cos \left(\frac{2 \pi}{3} x\right)+2 ? \\ y=\square \end{array}
y
=
cos
(
3
2
π
x
)
+
2
?
y
=
□
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant