Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve for
k
k
k
.
\newline
3
k
=
4
5
k
=
□
\begin{array}{l} \frac{3}{k}=\frac{4}{5} \\ k=\square \end{array}
k
3
=
5
4
k
=
□
View step-by-step help
Home
Math Problems
Grade 6
Multiply using the distributive property
Full solution
Q.
Solve for
k
k
k
.
\newline
3
k
=
4
5
k
=
□
\begin{array}{l} \frac{3}{k}=\frac{4}{5} \\ k=\square \end{array}
k
3
=
5
4
k
=
□
Write Equation:
Write down the given equation.
\newline
We have the equation
3
k
=
4
5
\frac{3}{k} = \frac{4}{5}
k
3
=
5
4
. We need to solve for
k
k
k
.
Cross-Multiply:
Cross-multiply to solve for
k
k
k
. Cross-multiplication gives us
3
×
5
=
4
×
k
3 \times 5 = 4 \times k
3
×
5
=
4
×
k
.
Perform Multiplication:
Perform the multiplication on both sides.
\newline
3
×
5
=
15
3 \times 5 = 15
3
×
5
=
15
and
4
×
k
=
4
k
4 \times k = 4k
4
×
k
=
4
k
.
\newline
So, we have
15
=
4
k
15 = 4k
15
=
4
k
.
Divide to Isolate:
Divide both sides by
4
4
4
to isolate
k
k
k
.
15
÷
4
=
4
k
÷
4
15 \div 4 = 4k \div 4
15
÷
4
=
4
k
÷
4
.
Simplify to Find
k
k
k
:
Simplify both sides to find the value of
k
k
k
.
15
4
=
3.75
\frac{15}{4} = 3.75
4
15
=
3.75
and
4
k
4
=
k
\frac{4k}{4} = k
4
4
k
=
k
. So,
k
=
3.75
k = 3.75
k
=
3.75
.
More problems from Multiply using the distributive property
Question
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6.2+37 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=4.1 i+85 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6-3 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=14 i+12.1 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
log
16
1
2
=
\log _{16} \frac{1}{2}=
lo
g
16
2
1
=
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
\begin{array}{l} y=-4 \sin (2 x-7)+3 ? \\ y=\square \end{array}
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
\begin{array}{l} y=-5 \cos (2 \pi x+1)-10 ? \\ y=\square \end{array}
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
sin
(
3
x
+
5
)
?
y
=
□
\begin{array}{l} y=\sin (3 x+5) ? \\ y=\square \end{array}
y
=
sin
(
3
x
+
5
)?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
\begin{array}{l} y=10 \cos (6 x-1)-4 ? \\ y=\square \end{array}
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
cos
(
2
π
3
x
)
+
2
?
y
=
□
\begin{array}{l} y=\cos \left(\frac{2 \pi}{3} x\right)+2 ? \\ y=\square \end{array}
y
=
cos
(
3
2
π
x
)
+
2
?
y
=
□
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant