Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
k.

{:[(10)/(3)=(k)/(9)],[k=]:}

Solve for k k .\newline103=k9k= \begin{array}{l} \frac{10}{3}=\frac{k}{9} \\ k= \end{array}

Full solution

Q. Solve for k k .\newline103=k9k= \begin{array}{l} \frac{10}{3}=\frac{k}{9} \\ k= \end{array}
  1. Identify Method: Identify the cross-multiplication method to solve the proportion.\newlineTo solve for kk in the equation (103)=(k9)(\frac{10}{3}) = (\frac{k}{9}), we can cross-multiply to find the value of kk.
  2. Cross-Multiply Terms: Cross-multiply the terms in the equation.\newline(103)=(k9)(\frac{10}{3}) = (\frac{k}{9}) implies that 10×9=3×k10 \times 9 = 3 \times k.
  3. Perform Multiplication: Perform the multiplication on both sides.\newline10×9=9010 \times 9 = 90 and 3×k=3k3 \times k = 3k.\newlineSo, 90=3k90 = 3k.
  4. Divide Equation: Divide both sides of the equation by 33 to solve for kk. \newline90=3k90 = 3k implies that k=903k = \frac{90}{3}.
  5. Calculate Value: Calculate the value of kk.k=903=30k = \frac{90}{3} = 30.

More problems from Multiply using the distributive property