Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
b. Express your answer in simplest radical form if necessary.

b=root(3)(-73)*root(3)(-73)*root(3)(-73)
Answer: 
b=

Solve for b b . Express your answer in simplest radical form if necessary.\newlineb=733733733 b=\sqrt[3]{-73} \cdot \sqrt[3]{-73} \cdot \sqrt[3]{-73} \newlineAnswer: b= b=

Full solution

Q. Solve for b b . Express your answer in simplest radical form if necessary.\newlineb=733733733 b=\sqrt[3]{-73} \cdot \sqrt[3]{-73} \cdot \sqrt[3]{-73} \newlineAnswer: b= b=
  1. Multiply radicands under cube root: We have b=733×733×733b=\sqrt[3]{-73}\times\sqrt[3]{-73}\times\sqrt[3]{-73}. To simplify, we multiply the radicands together under a single cube root.
  2. Calculate radicand: b=(73)(73)(73)3b=\sqrt[3]{(-73)\cdot(-73)\cdot(-73)}. When we multiply 73-73 by itself three times, we get 737373-73\cdot-73\cdot-73.
  3. Final result: Calculating 73×73×73-73\times-73\times-73 gives us 389017-389017.\newlineSo, b=3890173b=\sqrt[3]{-389017}.

More problems from Multiplication with rational exponents