Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x in simplest form.

1+5|6-3x|=26
Answer: 
x=

Solve for all values of x x in simplest form.\newline1+563x=26 1+5|6-3 x|=26 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x in simplest form.\newline1+563x=26 1+5|6-3 x|=26 \newlineAnswer: x= x=
  1. Isolate absolute value expression: Start by isolating the absolute value expression on one side of the equation.\newlineSubtract 11 from both sides of the equation to get:\newline1+563x1=2611 + 5|6 - 3x| - 1 = 26 - 1\newline563x=255|6 - 3x| = 25
  2. Divide by 55: Divide both sides of the equation by 55 to solve for the absolute value expression.\newline563x5=255\frac{5|6 - 3x|}{5} = \frac{25}{5}\newline63x=5|6 - 3x| = 5
  3. Set up two equations: Set up two separate equations to account for the two possible cases of the absolute value (one where the expression inside is positive and one where it is negative).\newlineCase 11: 63x=56 - 3x = 5\newlineCase 22: 63x=56 - 3x = -5
  4. Solve for x in Case 11: Solve for x in Case 11.\newline63x=56 - 3x = 5\newlineSubtract 66 from both sides:\newline3x=56-3x = 5 - 6\newline3x=1-3x = -1\newlineDivide both sides by 3-3:\newlinex=1/3x = -1 / -3\newlinex=1/3x = 1/3
  5. Solve for x in Case 22: Solve for x in Case 22.\newline63x=56 - 3x = -5\newlineSubtract 66 from both sides:\newline3x=56-3x = -5 - 6\newline3x=11-3x = -11\newlineDivide both sides by 3-3:\newlinex=113x = \frac{-11}{-3}\newlinex=113x = \frac{11}{3}

More problems from Evaluate absolute value expressions