Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x in simplest form.

1+4|10+2x|=45
Answer: 
x=

Solve for all values of x x in simplest form.\newline1+410+2x=45 1+4|10+2 x|=45 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x in simplest form.\newline1+410+2x=45 1+4|10+2 x|=45 \newlineAnswer: x= x=
  1. Isolate absolute value expression: Start by isolating the absolute value expression on one side of the equation.\newlineSubtract 11 from both sides of the equation to get:\newline1+410+2x1=4511 + 4|10 + 2x| - 1 = 45 - 1\newline410+2x=444|10 + 2x| = 44
  2. Divide by 44: Divide both sides of the equation by 44 to solve for the absolute value expression.\newline410+2x4=444\frac{4|10 + 2x|}{4} = \frac{44}{4}\newline10+2x=11|10 + 2x| = 11
  3. Set up two equations: Set up two separate equations to account for the two possible cases of the absolute value (one where the expression inside is positive and one where it is negative).\newlineCase 11: 10+2x=1110 + 2x = 11\newlineCase 22: 10+2x=1110 + 2x = -11
  4. Solve for x in Case 11: Solve for x in Case 11.\newline10+2x=1110 + 2x = 11\newlineSubtract 1010 from both sides:\newline2x=11102x = 11 - 10\newline2x=12x = 1\newlineDivide by 22:\newlinex=12x = \frac{1}{2}
  5. Solve for x in Case 22: Solve for x in Case 22.\newline10+2x=1110 + 2x = -11\newlineSubtract 1010 from both sides:\newline2x=11102x = -11 - 10\newline2x=212x = -21\newlineDivide by 22:\newlinex=21/2x = -21 / 2

More problems from Evaluate absolute value expressions