Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
a. Express your answer in simplest radical form if necessary.

a=root(3)(-87)*root(3)(-87)*root(3)(-87)
Answer: 
a=

Solve for a a . Express your answer in simplest radical form if necessary.\newlinea=873873873 a=\sqrt[3]{-87} \cdot \sqrt[3]{-87} \cdot \sqrt[3]{-87} \newlineAnswer: a= a=

Full solution

Q. Solve for a a . Express your answer in simplest radical form if necessary.\newlinea=873873873 a=\sqrt[3]{-87} \cdot \sqrt[3]{-87} \cdot \sqrt[3]{-87} \newlineAnswer: a= a=
  1. Calculate Cube Root Product: a=873×873×873a = \sqrt[3]{-87} \times \sqrt[3]{-87} \times \sqrt[3]{-87}\newlineWe know that multiplying three cube roots of the same number is the same as taking the cube root of the product of the numbers.
  2. Multiply 87-87 Three Times: a=(87)×(87)×(87)3a = \sqrt[3]{(-87) \times (-87) \times (-87)}\newlineWhen we multiply 87-87 three times, we get 873-87^3.
  3. Calculate 873-87^3: a=8733a = \sqrt[3]{-87^3}\newlineNow we calculate 873-87^3.
  4. Take Cube Root of 658503-658503: a=6585033a = \sqrt[3]{-658503}\newlineWe take the cube root of 658503-658503.
  5. Final Result: a=87a = -87\newlineThe cube root of 658503-658503 is 87-87, because (87)×(87)×(87)=658503(-87) \times (-87) \times (-87) = -658503.

More problems from Multiplication with rational exponents