Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlinew2+12w19=0w^2 + 12w - 19 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinew=w = _____ or w=w = _____

Full solution

Q. Solve by completing the square.\newlinew2+12w19=0w^2 + 12w - 19 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinew=w = _____ or w=w = _____
  1. Rewrite Equation: w2+12w19=0w^2 + 12w - 19 = 0\newlineRewrite the equation in the form of x2+bx=cx^2 + bx = c.\newlineAdd 1919 to both sides to move the constant term to the right side of the equation.\newlinew2+12w=19w^2 + 12w = 19
  2. Complete the Square: w2+12w=19w^2 + 12w = 19\newlineChoose the number to add to both sides to complete the square.\newlineSince (12/2)2=36(12/2)^2 = 36, add 3636 to both sides.\newlinew2+12w+36=19+36w^2 + 12w + 36 = 19 + 36\newlinew2+12w+36=55w^2 + 12w + 36 = 55
  3. Factor Left Side: w2+12w+36=55w^2 + 12w + 36 = 55\newlineIdentify the equation after factoring the left side.\newlinew2+12w+36=55w^2 + 12w + 36 = 55\newline(w+6)2=55(w + 6)^2 = 55
  4. Take Square Root: (w+6)2=55(w + 6)^2 = 55\newlineIdentify the equation after taking the square root on both sides.\newlineTake the square root of both sides of the equation.\newline(w+6)2=±55\sqrt{(w + 6)^2} = \pm\sqrt{55}\newlinew + 66 = ±55\pm\sqrt{55}
  5. Isolate Variable: We found:\newlinew+6=±55w + 6 = \pm\sqrt{55}\newlineChoose the equation after isolating the variable w.\newlineTo isolate w, subtract 66 from both sides of the equation.\newlinew+66=±556w + 6 - 6 = \pm\sqrt{55} - 6\newlinew=6±55w = -6 \pm \sqrt{55}
  6. Find Values of w: We have:\newlinew=6±55w = -6 \pm \sqrt{55}\newlineWhat are the two values of ww?\newlinew=6+55w = -6 + \sqrt{55} implies w6+7.42w \approx -6 + 7.42 which is w1.42w \approx 1.42.\newlinew=655w = -6 - \sqrt{55} implies w67.42w \approx -6 - 7.42 which is w13.42w \approx -13.42.\newlineValues of ww: 1.421.42, ww00

More problems from Solve a quadratic equation by completing the square