Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlinev2+6v41=0v^2 + 6v - 41 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____

Full solution

Q. Solve by completing the square.\newlinev2+6v41=0v^2 + 6v - 41 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____
  1. Rewrite in standard form: v2+6v41=0v^2 + 6v - 41 = 0\newlineRewrite the equation in the form of x2+bx=cx^2 + bx = c.\newlineAdd 4141 to both sides to set the equation up for completing the square.\newlinev2+6v41+41=0+41v^2 + 6v - 41 + 41 = 0 + 41\newlinev2+6v=41v^2 + 6v = 41
  2. Complete the square: v2+6v=41v^2 + 6v = 41\newlineChoose the equation after completing the square.\newlineSince (6/2)2=9(6/2)^2 = 9, add 99 to both sides to complete the square.\newlinev2+6v+9=41+9v^2 + 6v + 9 = 41 + 9\newlinev2+6v+9=50v^2 + 6v + 9 = 50
  3. Factor left side: v2+6v+9=50v^2 + 6v + 9 = 50\newlineIdentify the equation after factoring the left side.\newlinev2+6v+9=50v^2 + 6v + 9 = 50\newline(v+3)2=50(v + 3)^2 = 50
  4. Take square root: v+3)2=50(v + 3)^2 = 50(\newlineIdentify the equation after taking the square root on both sides.\newlineTake the square root of both sides of the equation.\newline\$\sqrt{(v + 3)^2} = \sqrt{50}\)\(\newline\)\(v + 3 = \pm\sqrt{50}\)\(\newline\)\(v + 3 \approx \pm 7.07\) (rounded to the nearest hundredth)
  5. Isolate variable: We found:\(\newline\)\(v + 3 \approx \pm 7.07\)\(\newline\)Choose the equation after isolating the variable \(v\).\(\newline\)To isolate \(v\), subtract \(3\) from both sides of the equation.\(\newline\)\(v + 3 - 3 \approx \pm 7.07 - 3\)\(\newline\)\(v \approx -3 \pm 7.07\)
  6. Isolate variable: We found:\(\newline\)\(v + 3 \approx \pm 7.07\)\(\newline\)Choose the equation after isolating the variable \(v\).\(\newline\)To isolate \(v\), subtract \(3\) from both sides of the equation.\(\newline\)\(v + 3 - 3 \approx \pm 7.07 - 3\)\(\newline\)\(v \approx -3 \pm 7.07\)We have:\(\newline\)\(v \approx -3 \pm 7.07\)\(\newline\)What are the two values of \(v\)?\(\newline\)\(v \approx -3 + 7.07\) implies \(v \approx 4.07\).\(\newline\)\(v\)\(0\) implies \(v\)\(1\).\(\newline\)Values of \(v\): \(v\)\(3\), \(v\)\(4\)

More problems from Solve a quadratic equation by completing the square