Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlinev212v23=0v^2 - 12v - 23 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____

Full solution

Q. Solve by completing the square.\newlinev212v23=0v^2 - 12v - 23 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____
  1. Rewrite equation: Rewrite the equation in the form of v2+bv=cv^2 + bv = c.\newlineAdd 2323 to both sides to set the equation up for completing the square.\newlinev212v23+23=0+23v^2 - 12v - 23 + 23 = 0 + 23\newlinev212v=23v^2 - 12v = 23
  2. Add 2323: Choose the number to add to both sides to complete the square.\newlineSince (122)2=36(-\frac{12}{2})^2 = 36, add 3636 to both sides.\newlinev212v+36=23+36v^2 - 12v + 36 = 23 + 36\newlinev212v+36=59v^2 - 12v + 36 = 59
  3. Choose number to add: Factor the left side of the equation.\newlinev212v+36=59v^2 - 12v + 36 = 59\newline(v6)2=59(v - 6)^2 = 59
  4. Factor left side: Take the square root of both sides of the equation.\newline(v6)2=±59\sqrt{(v - 6)^2} = \pm\sqrt{59}\newlinev6=±59v - 6 = \pm\sqrt{59}
  5. Take square root: Solve for vv by adding 66 to both sides of the equation.\newlinev6+6=±59+6v - 6 + 6 = \pm\sqrt{59} + 6\newlinev=6±59v = 6 \pm \sqrt{59}
  6. Solve for vv: Calculate the approximate decimal values of vv, rounded to the nearest hundredth.\newlinev6+59v \approx 6 + \sqrt{59} and v659v \approx 6 - \sqrt{59}\newlinev6+7.68v \approx 6 + 7.68 and v67.68v \approx 6 - 7.68\newlinev13.68v \approx 13.68 and v1.68v \approx -1.68

More problems from Solve a quadratic equation by completing the square