Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlineu26u11=0u^2 - 6u - 11 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineu=u = _____ or u=u = _____

Full solution

Q. Solve by completing the square.\newlineu26u11=0u^2 - 6u - 11 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineu=u = _____ or u=u = _____
  1. Rewrite and Add Constant: u26u11=0u^2 - 6u - 11 = 0\newlineRewrite the equation in the form of x2+bx=cx^2 + bx = c.\newlineAdd 1111 to both sides.\newlineu26u11+11=0+11u^2 - 6u - 11 + 11 = 0 + 11\newlineu26u=11u^2 - 6u = 11
  2. Complete the Square: u26u=11u^2 - 6u = 11\newlineChoose the equation after completing the square.\newlineSince (6/2)2=9(-6/2)^2 = 9, add 99 on both sides.\newlineu26u+9=11+9u^2 - 6u + 9 = 11 + 9\newlineu26u+9=20u^2 - 6u + 9 = 20
  3. Factor and Identify: u26u+9=20u^2 - 6u + 9 = 20\newlineIdentify the equation after factoring the left side.\newlineu26u+9=20u^2 - 6u + 9 = 20\newline(u3)2=20(u - 3)^2 = 20
  4. Take Square Root: (u3)2=20(u - 3)^2 = 20\newlineIdentify the equation after taking the square root on both sides.\newlineRound the non-terminating values to the nearest hundredth.\newlineTake the square root of both sides of the equation.\newline(u3)2=20\sqrt{(u - 3)^2} = \sqrt{20}\newlineu3=±20u - 3 = \pm\sqrt{20}\newlineu3±4.47u - 3 \approx \pm 4.47
  5. Isolate Variable: We found:\newlineu3±4.47u - 3 \approx \pm 4.47\newlineChoose the equation after isolating the variable uu.\newlineTo isolate uu, add 33 to both sides of the equation.\newlineu3+3±4.47+3u - 3 + 3 \approx \pm 4.47 + 3\newlineu3±4.47u \approx 3 \pm 4.47
  6. Isolate Variable: We found:\newlineu3±4.47u - 3 \approx \pm 4.47\newlineChoose the equation after isolating the variable uu.\newlineTo isolate uu, add 33 to both sides of the equation.\newlineu3+3±4.47+3u - 3 + 3 \approx \pm 4.47 + 3\newlineu3±4.47u \approx 3 \pm 4.47We have:\newlineu3±4.47u \approx 3 \pm 4.47\newlineWhat are the two values of uu?\newlineu3+4.47u \approx 3 + 4.47 implies u7.47u \approx 7.47.\newlineuu00 implies uu11.\newlineValues of uu: uu33, uu44

More problems from Solve a quadratic equation by completing the square