Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlineg2+6g23=0g^2 + 6g - 23 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineg=g = _____ or g=g = _____

Full solution

Q. Solve by completing the square.\newlineg2+6g23=0g^2 + 6g - 23 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineg=g = _____ or g=g = _____
  1. Rewrite and Add Constant: g2+6g23=0g^2 + 6g - 23 = 0\newlineRewrite the equation in the form of x2+bx=cx^2 + bx = c.\newlineAdd 2323 to both sides to set the equation up for completing the square.\newlineg2+6g23+23=0+23g^2 + 6g - 23 + 23 = 0 + 23\newlineg2+6g=23g^2 + 6g = 23
  2. Complete the Square: g2+6g=23g^2 + 6g = 23\newlineChoose the number to add to both sides to complete the square.\newlineSince (6/2)2=9(6/2)^2 = 9, add 99 to both sides.\newlineg2+6g+9=23+9g^2 + 6g + 9 = 23 + 9\newlineg2+6g+9=32g^2 + 6g + 9 = 32
  3. Factor and Identify: g2+6g+9=32g^2 + 6g + 9 = 32\newlineIdentify the equation after factoring the left side.\newlineg2+6g+9=32g^2 + 6g + 9 = 32\newline(g+3)2=32(g + 3)^2 = 32
  4. Take Square Root: g+3)2=32(g + 3)^2 = 32(\newlineIdentify the equation after taking the square root on both sides.\newlineTake the square root of both sides of the equation.\newline\$\sqrt{(g + 3)^2} = \sqrt{32}\)\(\newline\)\(g + 3 = \pm\sqrt{32}\)\(\newline\)\(g + 3 \approx \pm5.66\) (rounded to the nearest hundredth)
  5. Isolate Variable: We found:\(\newline\)\(g + 3 \approx \pm5.66\)\(\newline\)Choose the equation after isolating the variable \(g\).\(\newline\)To isolate \(g\), subtract \(3\) from both sides of the equation.\(\newline\)\(g + 3 - 3 \approx \pm5.66 - 3\)\(\newline\)\(g \approx -3 \pm5.66\)
  6. Isolate Variable: We found:\(\newline\)\(g + 3 \approx \pm5.66\)\(\newline\)Choose the equation after isolating the variable \(g\).\(\newline\)To isolate \(g\), subtract \(3\) from both sides of the equation.\(\newline\)\(g + 3 - 3 \approx \pm5.66 - 3\)\(\newline\)\(g \approx -3 \pm5.66\)We have:\(\newline\)\(g \approx -3 \pm5.66\)\(\newline\)What are the two values of \(g\)?\(\newline\)\(g \approx -3 + 5.66\) implies \(g \approx 2.66\).\(\newline\)\(g\)\(0\) implies \(g\)\(1\).\(\newline\)Values of \(g\): \(g\)\(3\), \(g\)\(4\)

More problems from Solve a quadratic equation by completing the square