Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlined22d27=0d^2 - 2d - 27 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlined=d = _____ or d=d = _____

Full solution

Q. Solve by completing the square.\newlined22d27=0d^2 - 2d - 27 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlined=d = _____ or d=d = _____
  1. Rewrite equation and add constant: Rewrite the equation in the form of d2+bd=cd^2 + bd = c. Add 2727 to both sides to move the constant term to the right side of the equation. d22d27+27=0+27d^2 - 2d - 27 + 27 = 0 + 27 d22d=27d^2 - 2d = 27
  2. Complete the square: Choose the number to add to both sides to complete the square.\newlineSince (22)2=1\left(-\frac{2}{2}\right)^2 = 1, add 11 to both sides.\newlined22d+1=27+1d^2 − 2d + 1 = 27 + 1\newlined22d+1=28d^2 − 2d + 1 = 28
  3. Factor left side: Factor the left side of the equation. \newlined22d+1d^2 - 2d + 1 is a perfect square trinomial and can be factored into (d1)2(d - 1)^2.\newline(d1)2=28(d - 1)^2 = 28
  4. Take square root: Take the square root of both sides of the equation.\newline(d1)2=±28\sqrt{(d − 1)^2} = \pm\sqrt{28}\newlined1=±28d − 1 = \pm\sqrt{28}\newlineSince 28\sqrt{28} simplifies to 47\sqrt{4\cdot7} which is 272\cdot\sqrt{7}, we have:\newlined1=±27d − 1 = \pm2\cdot\sqrt{7}
  5. Solve for d: Solve for d by adding 11 to both sides of the equation.d1+1=±27+1d - 1 + 1 = \pm 2\sqrt{7} + 1d=1±27d = 1 \pm 2\sqrt{7}
  6. Calculate decimal values: Calculate the approximate decimal values of dd, rounded to the nearest hundredth.d1+27d \approx 1 + 2\sqrt{7} or d127d \approx 1 - 2\sqrt{7}d1+2×2.65d \approx 1 + 2\times2.65 or d12×2.65d \approx 1 - 2\times2.65d1+5.30d \approx 1 + 5.30 or d15.30d \approx 1 - 5.30d6.30d \approx 6.30 or d4.30d \approx -4.30

More problems from Solve a quadratic equation by completing the square