Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlined220d47=0d^2 - 20d - 47 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlined=d = _____ or d=d = _____

Full solution

Q. Solve by completing the square.\newlined220d47=0d^2 - 20d - 47 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlined=d = _____ or d=d = _____
  1. Rewrite in standard form: d220d47=0d^2 - 20d - 47 = 0\newlineRewrite the equation in the form of x2+bx=cx^2 + bx = c.\newlineAdd 4747 to both sides.\newlined220d47+47=0+47d^2 - 20d - 47 + 47 = 0 + 47\newlined220d=47d^2 - 20d = 47
  2. Complete the square: d220d=47d^2 - 20d = 47\newlineChoose the number to add to both sides to complete the square.\newlineSince (20/2)2=100(-20/2)^2 = 100, add 100100 to both sides.\newlined220d+100=47+100d^2 - 20d + 100 = 47 + 100\newlined220d+100=147d^2 - 20d + 100 = 147
  3. Identify factored form: d220d+100=147d^2 - 20d + 100 = 147\newlineIdentify the equation after factoring the left side.\newlined220d+100=147d^2 - 20d + 100 = 147\newline(d10)2=147(d - 10)^2 = 147
  4. Take square root: (d10)2=147(d − 10)^2 = 147\newlineIdentify the equation after taking the square root on both sides.\newlineTake the square root of both sides of the equation.\newline(d10)2=147\sqrt{(d − 10)^2} = \sqrt{147}\newlined − 1010 = ±147\pm\sqrt{147}
  5. Isolate variable: We found:\newlined10=±147d - 10 = \pm\sqrt{147}\newlineChoose the equation after isolating the variable dd.\newlineTo isolate dd, add 1010 to both sides of the equation.\newlined10+10=±147+10d - 10 + 10 = \pm\sqrt{147} + 10\newlined=10±147d = 10 \pm \sqrt{147}
  6. Isolate variable: We found:\newlined10=±147d - 10 = \pm\sqrt{147}\newlineChoose the equation after isolating the variable dd.\newlineTo isolate dd, add 1010 to both sides of the equation.\newlined10+10=±147+10d - 10 + 10 = \pm\sqrt{147} + 10\newlined=10±147d = 10 \pm \sqrt{147}We have:\newlined=10±147d = 10 \pm \sqrt{147}\newlineWhat are the two values of dd?\newlined=10+147d = 10 + \sqrt{147} implies d10+12.12d \approx 10 + 12.12 which is dd00.\newlinedd11 implies dd22 which is dd33.\newlineValues of dd: dd55, dd66

More problems from Solve a quadratic equation by completing the square