Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

simplity.\newlinecos3(x)+sin2(x)cos(x)\cos^3(x)+\sin^2(x)\cos(x)

Full solution

Q. simplity.\newlinecos3(x)+sin2(x)cos(x)\cos^3(x)+\sin^2(x)\cos(x)
  1. Recognize Identities: Recognize the trigonometric identities.\newlineWe can use the Pythagorean identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1 to simplify the expression.
  2. Use Pythagorean Identity: Rewrite the expression using the Pythagorean identity.\newlineWe can replace sin2(x)\sin^2(x) with 1cos2(x)1 - \cos^2(x) in the expression cos3(x)+sin2(x)cos(x)\cos^3(x) + \sin^2(x) \cdot \cos(x).\newlinecos3(x)+(1cos2(x))cos(x)\cos^3(x) + (1 - \cos^2(x)) \cdot \cos(x)
  3. Rewrite Expression: Distribute the cos(x)\cos(x) in the second term.cos3(x)+cos(x)cos3(x)\cos^3(x) + \cos(x) - \cos^3(x)
  4. Distribute cos(x)\cos(x): Combine like terms.\newlineThe terms cos3(x)\cos^3(x) and cos3(x)-\cos^3(x) cancel each other out, leaving us with:\newlinecos(x)\cos(x)

More problems from Evaluate integers raised to rational exponents