Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify:
(x^(8))/(x^(3))
(A) x^(5)
(B) x^(-5)
(C) x^(11)
(D) x^(24)

Simplify:\newlinex8x3 \frac{x^{8}}{x^{3}} \newline(A) x5 x^{5} \newline(B) x5 x^{-5} \newline(C) x11 x^{11} \newline(D) x24 x^{24}

Full solution

Q. Simplify:\newlinex8x3 \frac{x^{8}}{x^{3}} \newline(A) x5 x^{5} \newline(B) x5 x^{-5} \newline(C) x11 x^{11} \newline(D) x24 x^{24}
  1. Use Exponent Properties: We will use the properties of exponents to simplify the expression. The first property we will use is that when dividing powers with the same base, we subtract the exponents: am/an=amna^{m}/a^{n} = a^{m-n}.
  2. Apply Property to First Part: Apply the property to the first part of the expression: (x8)/(x3)=x83=x5(x^{8})/(x^{3}) = x^{8-3} = x^{5}.
  3. Combine Like Terms: Now we have x5×x5×x5×x11×x24x^{5} \times x^{5} \times x^{-5} \times x^{11} \times x^{24}. The next property we will use is that when multiplying powers with the same base, we add the exponents: am×an=am+na^{m} \times a^{n} = a^{m+n}.
  4. Check for Errors: Combine the terms with the same base by adding their exponents: x(5+55+11+24)=x40x^{(5+5-5+11+24)} = x^{40}.
  5. Check for Errors: Combine the terms with the same base by adding their exponents: x(5+55+11+24)=x40x^{(5+5-5+11+24)} = x^{40}. Check for any mathematical errors in the previous steps. There are no errors, and the expression has been simplified correctly.

More problems from Multiplication with rational exponents