Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to create an equivalent expression.

-3(2+4k)+7(2k-1)
Choose 1 answer:
(A) 
2k-13
(B) 
8k-13
(C) 
2k+13
(D) 
2k-7

Simplify to create an equivalent expression.\newline3(2+4k)+7(2k1)-3(2+4k)+7(2k-1)\newlineChoose 11 answer:\newline(A) 2k132k-13\newline(B) 8k138k-13\newline(C) 2k+132k+13\newline(D) 2k72k-7

Full solution

Q. Simplify to create an equivalent expression.\newline3(2+4k)+7(2k1)-3(2+4k)+7(2k-1)\newlineChoose 11 answer:\newline(A) 2k132k-13\newline(B) 8k138k-13\newline(C) 2k+132k+13\newline(D) 2k72k-7
  1. Distribute 3-3: First, distribute the 3-3 across the terms inside the first set of parentheses.\newline3×2=6-3 \times 2 = -6\newline3×4k=12k-3 \times 4k = -12k\newlineSo the expression becomes: 612k+7(2k1)-6 - 12k + 7(2k - 1)
  2. Distribute 77: Next, distribute the 77 across the terms inside the second set of parentheses.7×2k=14k7 \times 2k = 14k7×1=77 \times -1 = -7So the expression now becomes: 612k+14k7-6 - 12k + 14k - 7
  3. Combine like terms: Combine like terms by adding/subtracting the constants and the coefficients of kk.67=13-6 - 7 = -13 (combining the constants)12k+14k=2k-12k + 14k = 2k (combining the coefficients of kk)So the expression simplifies to: 2k132k - 13
  4. Check answer choices: Check the answer choices to see which one matches the simplified expression.\newlineThe correct answer is (A) 2k132k - 13.

More problems from Sum of finite series starts from 1